可持续能源产生的份额不断增长,并将继续导致效果储能系统的重要性显着增加,因为它变得越来越有必要弥补能够在电网中弥补可再生能源的波动。1,2在大量可能的技术中,一种有希望的电化学能量系统是氧化还原流量电池(RFB),例如全泡氧化还原流量电池(AVRFB)。3,4,在两个半细胞中,不同的氧化态种类用作氧化还原对。这比RFB具有一个显着的优势,而RFB在每个半细胞中采用了不同的金属氧化还原对,因为通过膜对钒物种的交叉污染不会导致AVRFBS的永久损失,从而导致系统的寿命较短。5,6 AVRFB的原理如图所示 1。 电池的两个半细胞通过质子交换膜(PEM)隔开,该质子交换膜(PEM)促进了通过质子传递的电荷平衡,而电气导体可确保电子的流动。 应该注意的是,也可以使用阴离子交换膜;但是,PEM是最常用的膜。 7–9因此,阴离子交换膜将5,6 AVRFB的原理如图1。电池的两个半细胞通过质子交换膜(PEM)隔开,该质子交换膜(PEM)促进了通过质子传递的电荷平衡,而电气导体可确保电子的流动。应该注意的是,也可以使用阴离子交换膜;但是,PEM是最常用的膜。7–9因此,阴离子交换膜将
摘要:由于其高扩展性,安全性和灵活性,水氧化还原流量电池(RFB)已成为有希望的大型储能设备。基于锰的氧化还原材料是由于其地球丰度,负担能力和各种氧化状态而用于RFB的有希望的来源。然而,Mn氧化还原夫妻的不稳定性归因于已知涉及强jahn- teller效应的Mn 3+(D 4)的不稳定的D轨道构型,这阻碍了它们的实际使用。在这里,我们发现[Mn(CN)6] 5 - /4 - /3- negolyte在可逆性,稳定性和反应动力学方面提供了优势,这是由于添加了NACN支撑电解质,从而抑制了配体交换反应,从而导致高性能。[Mn(CN)6] 5 - /4 - /3- negolyte具有从Mn(I)到Mn(III)的稳定的多电体反应,导致100个周期后的高容量为133.7 mAh。我们提供了从原位拉曼分析获得的化学证据,用于在电化学循环过程中前所未有的MN(i)稳定性,开辟了针对低成本基于MN的氧化还原系统设计的新途径。a
治疗和管理•患有HIVºRIF的患者不应用于接受大多数抗HIV蛋白酶抑制剂(PIS)和非核苷逆转录酶抑制剂(NNRTIS)的患者。RFB;可能需要调整RFB剂量以同时给予某些抗HIV PI和NNRTIS。RIF可与核苷逆转录酶抑制剂(NRTIS)一起使用。请咨询专家。• RIPE treatment regimen º Doses should not be divided º Use EMB with caution in children whose vision cannot be monitored º Discontinue EMB when susceptibility to INH and RIF is demonstrated with good clinical response º Discontinue PZA after the Initial Phase - 8 weeks ( see treatment table for number of doses ) - unless there is resistance to either INH or RIF or lack of clinical response • Drug resistance º Mono-drug resistant disease可能需要改变治疗方案。寻求专家咨询。º多药抗性疾病(对INH和RIF的抗性)需要个性化的治疗方案并延长治疗。寻求专家咨询。•对肺结核患者的痰监测º进行至少每月进行痰液监测,直到连续2种持续的痰培养物变为阴性。ºEDOH建议与结核病专家咨询,以便在初始阶段结束时仍然是痰培养阳性的任何人。 •正在进行的评估ºEDOH建议与结核病专家咨询,以便在初始阶段结束时仍然是痰培养阳性的任何人。•正在进行的评估
AC alternating current Ah ampere-hour BESS battery energy storage system BLS U.S. Bureau of Labor Statistics BMS battery management system BOP balance of plant BOS balance of system C&C controls & communication C&I civil and infrastructure CAES compressed-air energy storage DC direct current DOD depth of discharge DOE U.S. Department of Energy E/P energy to power EPC engineering, procurement, and construction EPRI Electric Power Research Institute ESGC Energy Storage Grand Challenge ESS energy storage system EV electric vehicle GW gigawatts HESS hydrogen energy storage system hr hour HVAC heating, ventilation, and air conditioning kW kilowatt kWe kilowatt-electric kWh kilowatt-hour LCOE levelized cost of energy LFP lithium-ion iron phosphate MW megawatt MWh megawatt-hour NHA National Hydropower Association NMC nickel manganese cobalt NRE non-recurring engineering NREL国家可再生能源实验室O&M操作和维护PCS电源转换系统PEM聚合物电解质膜PNNL Pacific Northwest National National Laboratory PSH PSH PSH PSH PSH泵存储Hydro PV光伏R&D研究与开发RFB RFB
摘要:本报告描述了非水性氧化还原流量电池的二氨基丙烷 - 苯噻硫氨酸杂化天主分解器的开发。分子是通过添加二氨基丙烷(DAC)取代基于苯噻嗪的氮,以快速和模块化的方式合成。将多功能的C – N耦合方案(可提供对不同衍生物的访问)与计算和结构 - 培训分析允许鉴定CATALYTE,该识别在0.64和1.00 V VS FC /FC +的电位上显示稳定的两电动循环,以及所有氧化液的溶解性以及所有氧化液(均为MIMM5M5 m5 m5 m)。该天主教徒被部署在高能量密度的两电子RFB中,在266小时的流细胞循环中以> 0.5 m的电子浓度表现出> 90%的容量保留。
摘要:本报告描述了非水性氧化还原流量电池的二氨基丙烷 - 苯噻硫氨酸杂化天主分解器的开发。分子是通过添加二氨基丙烷(DAC)取代基于苯噻嗪的氮,以快速和模块化的方式合成。将多功能的C – N耦合方案(可提供对不同衍生物的访问)与计算和结构 - 培训分析允许鉴定CATALYTE,该识别在0.64和1.00 V VS FC /FC +的电位上显示稳定的两电动循环,以及所有氧化液的溶解性以及所有氧化液(均为MIMM5M5 m5 m5 m)。该天主教徒被部署在高能量密度的两电子RFB中,在266小时的流细胞循环中以> 0.5 m的电子浓度表现出> 90%的容量保留。
开标:投标书必须在太平洋时间上午 11:00 之前送达市采购和应付款部门。响应 RFB 的密封投标书将于星期二上午 11:15 由采购代表打开,并在位于塔科马公共事业行政大楼北楼(地址:3628 S. 35 th Street, Tacoma, WA 98409,位于主楼层的 M-1 会议室)举行的公开投标开标会上大声宣读。投标开标会也将于星期二上午 11:15 以虚拟方式举行。请通过此链接参加或致电 1 (253) 215 8782。响应 RFP、RFQ 或 RFI 的投标书将记录为已收到。在提交截止日期当天下午 1:00 之后,初步结果将尽快发布到 www.TacomaPurchasing.org。
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其