©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
抽象准确地定位了3D声音源并估算其语义标签(其中可能不可见,但假定源位于场景中物体的物理表面上)具有许多真实的应用,包括检测气体泄漏和机械故障。在这种情况下,视听弱相关性在得出创新方法时提出了新的挑战,以回答是否或如何使用交叉模态信息来解决任务。朝着这一目标,我们建议使用由针孔RGB-D摄像头和共面四通道麦克风阵列(MIC-ARRAY)组成的声学相机钻机(MIC-Array)。通过使用此钻机来记录来自多视图的视听信号,我们可以使用跨模式提示来估计声源3D位置。特别是,我们的框架Soundloc3d将任务视为集合预测问题,集合中的每个元素都对应于潜在的声源。鉴于视听弱相关,首先是从单个视图mi-crophone阵列信号中学到的集合表示,然后通过主动合并从多视rgb-d图像揭示的物理表面提示来确认。我们证明了Soundloc3d在大型模拟数据集上的效率和优势,并进一步显示了其对RGB-D测量不准确性和环境噪声干扰的鲁棒性。
摘要。松散的棕榈果(LPF)是一种油棕果,已从其堆中成熟并掉落,含有高油脂含量。LPF的每个损失都会影响石油提取率并导致财务损失。现有的LPF收集方法不是很有效,因为它们需要人类的控制和监督。常规方法,例如机械和滚筒型LPF收集器,由于LPF散布在广泛的人工林上,因此效率低下。因此,必须使用自主LPF检测系统。但是,基于图像的检测系统通常受到诸如亮度和草的环境因素的干扰,而LPF位置随机器人和摄像头的位置而变化。这项研究的一般目标是开发一种基于图像的LPF检测算法。这需要基于深度学习的实时应用的有效检测算法。另外,使用图像深度(RGB-D)准确地确定LPF位置是必不可少的。该项目采用高效率和准确性的Yolov4对象检测器来实现实时LPF检测。使用深度图像和Intel Realsense D435i相机的视野,LPF位置是通过LPF边界框的中心坐标与相机之间的距离确定的。该系统已集成到机器人操作系统(ROS)中,以确保机器人的可用性。该系统达到了98.74%的平均准确性(MAP@IOU 0.5),平均损失为0.124,检测时间为5.14ms。对于LPF位置确定,算法的计算位置和手动测量之间的差异仅为X坐标的3.82厘米,而Y坐标的差异仅为1.80厘米。
文本到图像扩散生成模型可以以繁琐的及时工程为代价产生高质量的图像。可以通过引入布局条件来提高可控性,但是现有方法缺乏布局编辑能力和对对象属性的细粒度控制。多层生成的概念具有解决这些局限性的巨大潜力,但是同时生成图像实例与场景组成限制了控制对细粒对象属性的控制,在3D空间和场景操作能力中相对定位。在这项工作中,我们提出了一种新型的多阶段生成范式,该范式专为细粒度的控制,灵活性和互动性而设计。为了确保对实例属性的控制,我们设计了一个新颖的训练范式,以使扩散模型适应带有透明度信息的RGBA图像,以生成孤立的场景组件。为了构建复杂的图像,我们采用了这些预生成的实例,并引入了一个多层复合生成过程,该过程平滑地组件在现实的场景中。我们的实验表明,我们的RGBA扩散模型能够生成具有对对象属性的精确控制的多样化和高质量实例。通过多层组成,我们证明了我们的方法允许从高度复杂的提示中构建和操纵图像,并通过对物体外观和位置进行精细的控制,从而获得比竞争方法更高的控制程度。
未来在太空中的作物生产将需要强大的监测技术,以优化农作物产量,减少废物并生成自动化植物生长设计的数据。成像被认为是测量植物健康的工具,但是尚未在太空飞行中测试室内作物的成像系统。幸运的是,已经捕获了ISS上高级植物栖息地(APH)内生长的作物植物的RGB图像。在基于地面的研究中,肯尼迪航天中心(NASA,KSC)正在与美国农业部(USDA ARS)合作,以开发一种用于监测室内农作物植物健康状况的成像系统。在一项研究中,我们在14天的时间内将干旱应力应用于“龙龙”生菜植物,并以24小时的增量捕获了RGB图像。图像,并应用差异指数,可以使用图像来检测生菜中的干旱应激。然后将此差异指数应用于APH地面单元内收集的RGB图像,以在不同的底物水分条件下进行飞行前的实验,并在不同的底物水分条件下生长出“超湿”生菜,结果表明,RGB摄像机能够检测到太空飞行植物生长硬件内的干旱应力。这些结果表明,已经部署到太空的RGB摄像机可能会提供有价值的信息,以监视外星环境中的植物生产。这项研究得到了NASA的太空生物学计划的支持。
摘要 - 点云注册是估计两个点云之间刚性转换矩阵的基本任务,并被视为下游视觉任务的先决条件。最近的工作试图使用可获得的RGB-D序列解决注册问题,而不是仅依靠点云,这可能并不总是可用。然而,由于多模式特征的简单串联和向量维度的增加,大多数现有的无监督RGB-D点云注册工作都难以获得细粒度,健壮,判别对应关系。这些方法通常遵循一个常见的范式:从输入数据中提取特征,估计对应关系并通过几何拟合获得转换矩阵。在这项工作中,我们设计了一个生成特征提取模块,以充分利用多模式信息,并寻求对通讯估计的新颖观点,该估算将源和目标点云中的点扩展到基于超矩形的嵌入中,并根据N-Dimensions space in-Dimensientions in-Dimensions in-Dimentions contractions in-Dimentimentions conteconsienss in-Dimentions contractions。每个基于高矩形的嵌入都是基于提出的生成特征提取模块的天然和歧视性语义的构建的,该模块涉及扩散分支,几何分支和点像素融合。我们利用生成模型的能力充分利用RGB-框架中的两种互补方式的信息。我们的代码将在以下网址发布:https://github.com/cbyan1003/dce。此外,这种独特的几何空间允许有效地计算交点量和模型概率概率,以估计对应关系。在3DMatch和扫描仪数据集上进行的广泛实验显示了该方法在这项具有挑战性的任务中的有效性,表现优于最先进的方法。
摘要:咖啡生产的可持续性是全球生产者的关注点。为了保持可持续性,有必要达到令人满意的咖啡生产力和质量。害虫和疾病会降低生产率,并可能影响咖啡豆的质量。为了确保可持续性,生产商需要监测可能导致大量农作物损失的害虫,例如咖啡叶矿工Leucoptera Coffeella(Lepidoptera:Lyonetiidae),属于鳞翅目命令和Lyonetiidae家族。这项研究旨在使用机器学习技术和植被指数来远程识别咖啡叶矿工在咖啡种植地区的侵扰。咖啡叶矿工侵扰的现场评估是在2023年9月进行的。使用远程试验的飞机拍摄航空图像,以确定带有RGB(红色,绿色,蓝色)图像的13个营养指数。使用ArcGIS 10.8软件计算植被指数。一个综合数据库,其中包含咖啡叶矿工侵扰,植被指数和作物数据的详细信息。数据集分为培训和测试子集。使用了四种机器学习算法:随机森林(RF),逻辑回归(LR),支持向量机(SVM)和随机梯度下降(SGD)。超参数调整后,采用了测试子集进行模型验证。值得注意的是,SVM和SGD模型在估计咖啡叶矿工侵扰方面均表现出卓越的性能,KAPPA指数分别为0.6和0.67。植被指数和作物数据的综合使用提高了咖啡叶矿工检测的准确性。RF模型的性能不佳,而SVM和SGD模型的性能更好。这种情况突出了追踪咖啡叶矿工在不同年龄,不同品种和其他环境变量不同的领域中的挑战。
与互联网连接的相机支持许多有用的家庭监控和健康应用。但是,这些相同的摄像机indiscrim-捕获敏感和个人身份信息(PII),限制了它们在某些情况(例如房屋)中的接受。先前的工作删除了感兴趣的区域(ROI)以确保图像并改善隐私。但是,仅依靠RGB信息查找人员的方法容易受到环境和照明条件的影响,从而导致它们失败和泄漏PII。从我们的部署研究中,使用仅RGB的方法时,将近一半的包含人的图像泄漏。此外,经常进行ROI删除,要求服务器对这些操作进行可信赖。这项工作介绍了隐私系统,在添加热传感的情况下,我们的系统具有明显增强的RGB图像和视频中的人的能力,并在存储或传输任何数据之前在设备上有效地将其删除,同时又留在典型的IoT Power限制下。从我们上述的部署研究中,在办公室建造中庭,家庭住宅和室外公园环境中,私人原型有效地以99的消毒率有效地消除了PII。1%。此外,Privacylens可以使用其嵌入式GPU生成用于下游CV/ML任务的设备功能,如三个说明性应用中所示,进一步降低了PII的集合和存储。
加利福尼亚州桑尼维尔,2024 年 5 月 15 日,Luminus Devices 自豪地推出了一系列突破性的 4 合 1 RGBL(红-绿-蓝-黄绿色)LED,专为需要高输出混色和高显色指数 (CRI) 的舞台和建筑照明系统而设计。4 合 1 RGBL LED 各个发射器之间的间距最小,可提供无与伦比的混色能力,为照明设计师提供广泛的调色板来创造迷人的视觉效果。黄绿色(570 nm 主波长)通道取代了传统 4 合 1 LED 中使用的冷白色 LED,以扩大色彩空间并提高亮度。这些 LED 在最大电流下拥有一流的流明输出,同时保持超过 85 的高 CRI,确保在 3000K 至 8000K 的整个色温范围内提供明亮的照明。所有通道均可驱动高达 3A 和 100% DC,从而实现高流明输出且可靠性不打折扣。
摘要 - 准确识别复杂的地形特征,例如土壤组成和摩擦系数,对于基于模型的计划和越野环境中移动机器人的控制至关重要。光谱特征利用光吸收和反射的不同模式来识别各种材料,从而可以精确地表征其固有特性。机器人技术的最新研究探索了光谱的采用,以增强与环境的感知和相互作用。但是,安装这些传感器所需的巨大成本和精致的设置存在着广泛采用的强大障碍。在这项研究中,我们将RS-NET(RGB引入光谱网络),这是一种深层神经网络体系结构,旨在将RGB图像映射到相应的光谱签名。我们说明了如何将RS-NET与共同学习技术协同结合,以进行地形性质估计。初始结果证明了这种方法在表征广泛的越野现实世界数据集中的光谱特征方面的有效性。这些发现仅使用RGB摄像机强调了地形性质估计的可行性。