摘要 - 准确识别复杂的地形特征,例如土壤组成和摩擦系数,对于基于模型的计划和越野环境中移动机器人的控制至关重要。光谱特征利用光吸收和反射的不同模式来识别各种材料,从而可以精确地表征其固有特性。机器人技术的最新研究探索了光谱的采用,以增强与环境的感知和相互作用。但是,安装这些传感器所需的巨大成本和精致的设置存在着广泛采用的强大障碍。在这项研究中,我们将RS-NET(RGB引入光谱网络),这是一种深层神经网络体系结构,旨在将RGB图像映射到相应的光谱签名。我们说明了如何将RS-NET与共同学习技术协同结合,以进行地形性质估计。初始结果证明了这种方法在表征广泛的越野现实世界数据集中的光谱特征方面的有效性。这些发现仅使用RGB摄像机强调了地形性质估计的可行性。
摘要。对象检测的主题,涉及使汽车能够感知其环境的能力引起了更多的关注。为了更好地性能,对象检测算法通常需要大量的数据集,这些数据集经常被手动标记。此过程是充分的且耗时的。相反,模拟环境可以完全控制所有参数,并启用自动图像注释。Carla是一个专门用于自动驾驶研究的开源项目,就是这样的模拟器。本研究检查是否可以使用卡拉自动注释的模拟器数据来培训可以识别实际流量项目的对象检测模型。实验的发现表明,使用Carla的数据以及一些实际数据优化训练有素的模型令人鼓舞。Yolov5模型使用预验证的CARLA重量训练,与在2000 Kitti图像上受过训练的一项训练有素相比,所有性能指标均表现出改进。虽然它没有达到6000图像Kitti模型的性能水平,但增强确实很重要。MAP0.5:0.95得分的增强率约为10%,行人级别的改善最为明显。此外,可以证明,可以通过训练使用Carla数据的基本模型并使用Kitti数据集的较小部分对其进行微调来实现实质性的提升。此外,Carla Lidar图像在减少所需的真实图像的体积时的潜在效用是显而易见的。我们的代码可在以下网址找到:https://tinyurl.com/3fdjd9xb。
所有 Thermaltake TT RGB PLUS 产品均可连接到 Razer Chroma 生态系统。安装 TT RGB PLUS 软件和 Razer Synapse 3。
模拟混频器由键控信号控制,以在视频 DAC 的输出和模拟 RGB 输入之间切换。模拟 RGB 输入需要以直流耦合的方式与模拟混频器接口,而且这些 RGB 输入仅限于没有同步电平基座的 RGB 信号。可以通过设置 I 2 C 总线位 KEN = 1 来启用键控控制。可以生成两种键控:一种是外部键(当 KMOD[2:0] 全部为逻辑 0 时来自 EXTKEY 引脚),另一种是内部像素色键(当 KMOD[2:0] 不全部为逻辑 0 时)通过将输入像素数据与内部 I 2 C 总线寄存器值 KD[7:0] 进行比较而生成。受 KMOD[2:0] 位控制,有 4 种方式可以比较像素数据(见表 8)。
空间站实验设施(Misse-FF)已飞行了许多材料样品,以研究Leo太空天气暴露对材料和设备的性能和耐用性的影响。我们表现出计划于2022年6月推出的Misse-16任务,在Leo环境中播放了15种小说和充分的材料,持续了六个月。使用RGB/IR摄像机在整个任务中将实时测量光谱反射率的变化。这些时间分辨的数据将作为我们团队正在进行的基于实验室的太空天气交互实验的“太空真相”参考。在模拟的空间天气条件下,MisSE-16数据与重复样品的广泛地面测试的相关性将使材料降解的基本化学模型开发。本文讨论了地面测试活动的初步结果,以收集原始材料和损坏材料的RGB/IR图像,并开发机器学习算法以从颜色图像中提取反射光谱。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要:2020 年,COVID-19 的迅速蔓延迫使世界卫生组织 (WHO) 宣布 COVID-19 为全球大流行病。根据世卫组织的说法,预防此类病毒的对策之一是在公共场所佩戴口罩。本文提出了一种基于中性 RGB 和深度迁移学习提取特征的口罩检测模型。建议的模型分为三个步骤,第一步是转换到中性 RGB 域。这项工作被认为是将中性 RGB 转换应用于图像域的首次尝试之一,因为它通常用于灰度图像的转换。第二步是使用层数较少的 Alexnet 进行特征提取。第三步使用两种传统的机器学习算法创建检测模型:决策树分类器和支持向量机 (SVM)。将模拟口罩人脸数据集(SMF)与真实口罩人脸数据集(RMF)合并为一个包含两个类别(戴口罩人脸、不戴口罩人脸)的数据集,实验结果表明,真(T)中性域的SVM分类器测试准确率最高,为98.37%。
瀑布是一个严重的公共卫生问题,65岁以上的人是跌倒最严重的病变之一。也有一个事实,即瀑布会对老人的心态产生负面影响,从而导致自尊心低下,因为它变得依赖一个不断监视他的人,除了不断去医院旅行之外。一种自然而实用的方法,用于脆弱的E-SASO运动人员,并需要立即跌倒。因此,这项工作提出并评估计算视觉模型,以改善有跌倒风险的个人的监测和安全性,例如老年人或流动性降低的人。该模型包括一个生成神经网络,时空卷积块,光流计算,跟踪感兴趣区域的技术以及用于计算异常分数的饲料强制神经网络。分析模型与红外记录一起工作也很重要,因为在弱光环境中也可能发生跌倒。分析包括以不同组合应用各种图像处理过滤器和技术,以寻求找到满足高灵敏度和高F1分数的模型。使用RGB摄像机的最终神经网络模型达到99.21%的延迟性和0.98 F1得分,而使用红外摄像机的模型达到100%灵敏度和0.98的F1得分,超过了其他文献建议。异源评分技术已被证明具有一种很好的适应能力,即使在新视频场景中曝光,也能够识别跌倒,也是在实际情况下使用系统的理想选择。
高光谱成像 (HSI) 可获取多达数百个波段,已被提议作为一种超越 RGB 成像的数字化组织学成像方式,以提供更多定量信息来协助病理学家检测样本中的疾病。虽然数字化 RGB 组织学相当标准化且易于获取,但与 RGB 相比,组织学 HSI 通常需要定制设备和更长的成像时间。在这项工作中,我们提供了相应的乳腺癌 RGB 数字化组织学和组织学 HSI 数据集,并开发了一个条件生成对抗网络 (GAN),从正常细胞和癌细胞的标准 RGB 图像中人工合成 HSI。GAN 合成的 HSI 的结果很有希望,显示结构相似性 (SSIM) 约为 80%,平均绝对误差 (MAE) 为 6% 到 11%。需要进一步研究以确定在更大的数据集上从 RGB 图像生成 HSI 的能力。
摘要 - 常规摄像机在传感器上捕获图像辐照度(RAW),并使用图像信号处理器(ISP)将其转换为RGB图像。然后可以将图像用于各种应用中的摄影或视觉计算任务,例如公共安全监视和自动驾驶。可以说,由于原始图像包含所有捕获的信息,因此对于视觉计算而言,使用ISP不需要将RAW转换为RGB。在本文中,我们提出了一个新颖的ρ视框框架,以使用原始图像进行高水平的语义理解和低级压缩,而没有数十年来使用的ISP子系统。考虑到可用的原始图像数据集的稀缺性,我们首先开发了一个基于无监督的Cyclegan的不成对循环2R网络,以使用未配对的RAW和RGB图像来训练模块化的ISP和Inverse ISP(Invisp)模型。然后,我们可以使用任何最初在RGB域中训练的现有RGB图像数据集和Finune不同的模型来生成模拟的原始图像(SIMRAW),以处理现实世界中的相机原始图像。我们使用原始域yolov3和摄像头快照上的原始图像压缩机(RIC)演示了原始域中的对象检测和图像压缩功能。定量结果表明,与RGB域相比,原始域任务推断提供了更好的检测准确性和压缩效率。此外,所提出的ρVision在各种摄像机传感器和不同的任务特定模型上概括了。采用ρ视频的另外一种有益的是消除对ISP的需求,从而导致计算和处理时间的潜在减少。
