摘要:2020 年,COVID-19 的迅速蔓延迫使世界卫生组织 (WHO) 宣布 COVID-19 为全球大流行病。根据世卫组织的说法,预防此类病毒的对策之一是在公共场所佩戴口罩。本文提出了一种基于中性 RGB 和深度迁移学习提取特征的口罩检测模型。建议的模型分为三个步骤,第一步是转换到中性 RGB 域。这项工作被认为是将中性 RGB 转换应用于图像域的首次尝试之一,因为它通常用于灰度图像的转换。第二步是使用层数较少的 Alexnet 进行特征提取。第三步使用两种传统的机器学习算法创建检测模型:决策树分类器和支持向量机 (SVM)。将模拟口罩人脸数据集(SMF)与真实口罩人脸数据集(RMF)合并为一个包含两个类别(戴口罩人脸、不戴口罩人脸)的数据集,实验结果表明,真(T)中性域的SVM分类器测试准确率最高,为98.37%。
此产品仅用于专家用户的安装。请咨询合格的技术人员进行安装。安装不当可能会损坏您的设备。ek水块不承担任何责任,即表示使用这些产品或安装。以下说明如有更改,恕不另行通知。请访问我们的网站www.ekwb.com以获取更新。在安装此产品之前,请阅读在框后面打印的重要通知,披露和保修条件。
空间站实验设施(Misse-FF)已飞行了许多材料样品,以研究Leo太空天气暴露对材料和设备的性能和耐用性的影响。我们表现出计划于2022年6月推出的Misse-16任务,在Leo环境中播放了15种小说和充分的材料,持续了六个月。使用RGB/IR摄像机在整个任务中将实时测量光谱反射率的变化。这些时间分辨的数据将作为我们团队正在进行的基于实验室的太空天气交互实验的“太空真相”参考。在模拟的空间天气条件下,MisSE-16数据与重复样品的广泛地面测试的相关性将使材料降解的基本化学模型开发。本文讨论了地面测试活动的初步结果,以收集原始材料和损坏材料的RGB/IR图像,并开发机器学习算法以从颜色图像中提取反射光谱。
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
通过分层相关性传播增强核电站 AI 模型的可解释性 Seung Geun Kim a*、Seunghyoung Ryu a、Hyeonmin Kim b、Kyungho Jin b、Jaehyun Cho ba 应用人工智能实验室/b 韩国原子能研究院风险评估与管理研究团队,韩国大田儒城区大德大路 989 号街 111,34057 * 通讯作者:sgkim92@kaeri.re.kr 1.简介 随着人工智能 (AI) 技术的快速发展,各个领域的应用数量巨大。核领域也紧跟这一趋势,许多研究利用 AI 模型解决事件诊断和自动/自主操作等问题。然而,占据近期 AI 技术应用最大份额的深度神经网络 (DNN) 具有不透明且可解释性低的局限性。对于基于 DNN 的模型,很难了解模型的内部逻辑或模型如何从给定的输入推断出输出。由于这一限制,尽管基于 DNN 的模型的性能可以接受,但人们对将其实际应用于安全关键领域和与道德/法律问题相关的领域仍犹豫不决。为了克服可解释性低的限制,已经提出了许多可解释的人工智能 (XAI) 方法。XAI 方法可以提供详细的解释,例如模型的内部逻辑和输入与输出之间的关系。然而,尽管可解释性问题对于安全关键的核领域至关重要,但缺乏处理 XAI 的研究。在本研究中,为了提高核领域人工智能模型的可解释性和实用性,研究了分层相关性传播 (LRP) [1],它是 XAI 方法之一,与其他 XAI 方法相比,它在许多应用中表现出更好的性能。论文的其余部分组织如下。在第 2 章中,对 XAI 和 LRP 进行了简要说明。第 3 章描述了可行性检查实验,第 4 章总结了本文。 2. 前言 2.1 可解释人工智能 可解释人工智能 (XAI) 是一种使人类轻松理解 AI 模型的技术。大多数 AI 模型在数据处理和解决问题的方法方面与人类不同。例如,AI 模型识别具有像素 RGB 值的图像,而人类则不能。提出 XAI 是为了减轻理解 AI 模型内部过程或推断某些输出的原因的难度。
摘要:估计单幅航拍图像中建筑物和植被的高度是一个具有挑战性的问题。提出了一种以任务为中心的深度学习 (DL) 模型,该模型结合了成功的 DL 模型(U-NET 和残差网络)的建筑特征,并学习从单个航拍图像到规范化数字表面模型 (nDSM) 的映射。该模型在具有相应 DSM 和数字地形模型 (DTM) 的航拍图像上进行训练,然后用于推断没有高程信息的图像的 nDSM。使用覆盖英国曼彻斯特大片地区的数据集以及 2018 年 IEEE GRSS 数据融合竞赛 LiDAR 数据集对该模型进行了评估。结果表明,所提出的 DL 架构适合该任务,并且大大超越了其他最先进的 DL 方法。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
Patrice E Carbonneau 1、Stephen J Dugdale 3、Toby P Breckon 2、James T Dietrich 4、Mark A Fonstad 5、Hitoshi Miyamoto 6 和 Amy S Woodget 7
所有 Thermaltake TT RGB PLUS 产品均可连接到 Razer Chroma 生态系统。安装 TT RGB PLUS 软件和 Razer Synapse 3。