一种两步催化的热解技术可用于从废物塑料和水热合成途径中产生氧化石墨烯(RGO),以产生NICO 2 O 4纳米棒和NICO 2 O 4 @WPRGO纳米复合材料。废物塑料衍生的还原石墨烯(WPRGO)提供了导电网络,并刺激了其表面上NICO 2 O 4纳米棒的生长,以增加电化学电荷存储性能期间电子的收集和运输。此技术使NICO 2 O 4 @WPRGO适用于超级电容器电极材料。使用2 M KOH溶液中的两个和三电极系统评估复合材料的电化学性能。NICO 2 O 4 @WPRGO材料的出色特定电容值及其对称的CV和GCD的对称原型电池约为1566 F G 1和400 F G 1(以2 mV s 1)和1105 F G 1和334 F G 1和334 F G 1(分别为0.5 A G 1),分别为0.5 A G 1)。此外,组装的对称和非对称电池的高能密度分别为17 W H Kg 1和45.08 W H Kg 1,分别为153 W kg 1和980 W kg 1的功率密度,以及在15,000 000和3000 cycles之后,高循环稳定性分别为86%和88.5%。
今天,血糖监测在糖尿病患者中的重要性已经产生了开发新的葡萄仪的全球需求。 本文介绍了可便携式智能葡萄仪的制造,用于以高灵敏度监测血糖。 葡萄糖仪采用由Cu/au/au/rgo/pedot的结构制造的生物电子测试带贴片:互插的电极上的PSS。 我们证明,基于两电极的这种结构可以优于市场可用的三电极电化学测试条。 它具有良好的电催化特性,表明血糖的高性能感知。 所提出的生物电子纤维仪可以在响应时间,检测范围和检测极限方面超过商业电化学测试条。 用于制造智能血糖仪的电子模块,例如电源,对数字转换器,OLED屏幕和无线变速箱模块的模拟,并集成到印刷电路板上,并将其包装成生物电子葡萄糖仪,从而使该血糖监测舒适地处理。 通过SEM和AFM研究了活性层生物传感器的特征。 葡萄糖可以在0–100 mm的广泛检测范围内监测葡萄糖,敏感性为5.65 mA -m -1的检测极限(1 µM),以及出色的感应性能,例如高选择性,高可重复性和良好的构成测试条的稳定性。 有11种人体血液和血清样品,血糖仪显示出高临床精度,最佳值的RSD为0.012。今天,血糖监测在糖尿病患者中的重要性已经产生了开发新的葡萄仪的全球需求。本文介绍了可便携式智能葡萄仪的制造,用于以高灵敏度监测血糖。葡萄糖仪采用由Cu/au/au/rgo/pedot的结构制造的生物电子测试带贴片:互插的电极上的PSS。我们证明,基于两电极的这种结构可以优于市场可用的三电极电化学测试条。它具有良好的电催化特性,表明血糖的高性能感知。所提出的生物电子纤维仪可以在响应时间,检测范围和检测极限方面超过商业电化学测试条。用于制造智能血糖仪的电子模块,例如电源,对数字转换器,OLED屏幕和无线变速箱模块的模拟,并集成到印刷电路板上,并将其包装成生物电子葡萄糖仪,从而使该血糖监测舒适地处理。通过SEM和AFM研究了活性层生物传感器的特征。葡萄糖可以在0–100 mm的广泛检测范围内监测葡萄糖,敏感性为5.65 mA -m -1的检测极限(1 µM),以及出色的感应性能,例如高选择性,高可重复性和良好的构成测试条的稳定性。有11种人体血液和血清样品,血糖仪显示出高临床精度,最佳值的RSD为0.012。
摘要:碳纳米材料近年来在生物医学领域引起越来越多的关注,被用作适用于医学治疗的药物纳米载体,因为它们的表面积大、细胞内化率高、优先在肿瘤中积累,使这些纳米材料能够优先将化疗药物运送到肿瘤部位,从而降低药物的毒副作用。然而,人们普遍担心碳纳米材料固有的细胞毒性,这一点至今仍存在争议,研究结果相互矛盾。我们在此研究了各种碳纳米材料在人上皮性结直肠腺癌 (Caco-2) 细胞和人乳腺癌 (MCF-7) 细胞中的体外毒性。使用 Pluronic F-127 分散剂系统地比较了碳纳米角 (CNH)、碳纳米管 (CNT)、碳纳米片 (CNP)、氧化石墨烯 (GO)、还原氧化石墨烯 (GO) 和纳米金刚石 (ND)。碳纳米材料处理后的细胞活力遵循 CNP < CNH < RGO < CNT < GO < ND 的顺序,对分裂更快的 Caco-2 细胞的影响更为明显。CNP 产生的活性氧 (ROS) 水平非常高。此外,还比较了这些材料作为纳米载体在阿霉素和喜树碱类抗癌药物输送领域的潜力。在所有情况下,碳纳米材料/药物复合物的抗癌活性都比游离药物有所提高,其效率在很大程度上取决于碳纳米材料的疏水性和表面化学性质。这些基础研究对于开发基于智能碳纳米材料的纳米载体的筛选和风险收益评估至关重要。
碳纤维(CF)有可能在“结构电池”概念中充当多功能和多功能导电电极。这些电池具有存储电能和携带机械负载的独特能力,而无需额外的电流收集器。但是,在商业化结构电池的道路上仍然存在许多挑战。一个重大的挑战在于基于CF的阴极复合材料的制造过程,包括活性材料对CF表面的粘附不良以及使用危险的有机溶剂,例如N-甲基吡咯酮(NMP)通过传统的叶片涂层。在这项研究中,我们使用电泳沉积(EPD)提出了一种可持续的制造方法,用磷酸锂(LifePo 4)和石墨烯纳米片构建阳性电极复合材料。尤其是乙醇被用作替代NMP的绿色溶剂,以最大程度地减少环境影响。同时,根据系统的比较分析,评估了不同类型的石墨烯添加剂(三种石墨烯纳米片(GNP),四种减少石墨烯(RGO)和一种自制石墨烯)对相对电池性能的影响。在测试的石墨烯添加剂中,基于LFP/RGO2的阳性电极表现出理想的特异性容量为126.2 mAhg -1,即使在2C的苛刻构成下,在500个循环的要求下,也保持了93%以上的保留率。
本文提出了一个有效的一致核模型,以分析基于一致的夫妇应力理论(CCST)和非经典限定元素方法的功能分级纳米复合材料(FG-NC)Mindlin板的行为。基于Halpin – Tsai模型提出了一种新颖的统一形式,以限制小规模的异质性,可以同时考虑基质和增强阶段的分级效应以及通过平板厚度的分布分布。为了满足夫妻应力理论的C 1连续性要求,通过使用Hermitian方法并以亚参数方式采用了四节点的矩形元素。该元素在每个节点上具有20度的自由度(DOF),在弯曲模式下将其降低至12 DOF,而不会伸展变形。FG-NC板的弯曲,自由振动和屈曲行为。氧化石墨烯(GO),氧化石墨烯(RGO)还原和银还原的石墨烯氧化石墨烯(AG-RGO)被考虑在分散相。尺寸依赖性最佳值,从而最大程度地减少其质量的频率约束。检查了各种参数的效果,例如分级指数,重量分数,分散模式,填充剂方面/厚度比和长度尺度参数,并提供了基准示例。
摘要:在这项工作中,已经开发了一种基于适体的电化学纳米传感器来早日检测前列腺癌。前列腺特异性抗原(PSA)是前列腺癌最常见的标志物,这项研究AIMES使用基于电化学纳米含量的适体检测该生物标志物,使用纳米结构使用纳米结构,使用纳米结构氧化物氧化物/氧化物氧化物/石墨含量碳氧化物/石墨碳氮化碳/氮化碳/金纳米(GO/G-C-g-c-c-c 3 n n 4/au nps)。通过还原氧化石墨烯,石墨氮化碳和金纳米颗粒(RGO /G-C 3 N N 4 /AU NPS),可以在玻璃碳电极(GCE)表面稳定适体链。为了确保适体的正确操作,在五个物质之间进行了选择性分析,并且与其他材料相比,诊断为稳定性和高选择性的电化学生物传感器,诊断所需的分析物(PSA)。进行了Aptasensor电化学,CV,SQW和EIS测试的表征,以研究合成的纳米颗粒的特征,XRD,FTIR,SEM,SEM,TEM测试,结果表明所使用的纳米颗粒已很好地合成。检测限(LOD)为1.67 pg.ml -1在六烯烃([Fe(CN)6] -3/-4)培养基中,这种检测的极限要低得多,并证明了PSA早期检测的纳米倍数的高能力。设计的生物传感器需要很短的时间(约30分钟)才能将PSA视为前列腺癌的症状。
慢性肾病 (CKD) 是影响人群的最严重的非传染性疾病之一。早期患者没有明显症状,直到发展为危及生命的终末期肾衰竭。因此,早期诊断 CKD 非常重要,以便进行治疗干预和进展监测。本文报道了一种即时诊断 (POC) 传感平台,使用采用新型表面分子印迹技术制备的还原氧化石墨烯/聚多巴胺分子印迹聚合物 (rGO/PDA-MIP),可同时检测三种 CKD 生物标志物,即肌酐、尿素和人血清白蛋白 (HSA)。开发了一种具有差分脉冲伏安法 (DPV) 功能的多通道电化学 POC 读出系统,结合表面 MIP 电极,可同时检测这三种生物标志物。该传感平台对所有三种分析物的检测限 (LoD) 均达到创纪录的飞摩尔水平,检测范围广,涵盖了它们的生理浓度。通过测量健康对照者和 CKD 患者的血清和尿液中的这些分析物进行临床验证。与医院获得的结果相比,平均回收率为 81.8–119.1%,而该平台更具成本效益、用户友好性,并且需要的样本到结果时间更短,显示出在资源有限的环境中部署用于早期诊断和跟踪 CKD 进展的潜力。
纳米结构的电化学生物传感器已经迎来了诊断精度的新时代,从而增强了临床生物标志物检测的敏感性和特异性。中,电容性生物传感可实现多个分子靶标的超灵敏标签检测。但是,与纳米结构平台的常规制造方法相关的复杂性和成本阻碍了这些设备的广泛采用。这项研究引入了一个电容式生物传感器,该生物传感器利用激光磨碎的还原氧化石墨烯(RGO)ELEC TRODE,该Elec Trodes装饰有金纳米颗粒(Aunps)。制造涉及激光标记的GO-AU 3 +膜,产生RGO-AUNP电极,通过按压戳面方法无缝传输到PET基板上。这些电极与特定生物受体功能化后,对生物分子识别具有显着的亲和力。例如,使用人IgG抗体的初步研究证实了使用电化学电容光谱学的生物传感器的检测能力。此外,生物传感器可以量化临床癌症生物标志物Ca-19-9糖蛋白。生物传感器的动态范围在0到300 u ml -1,检测极限为8.9 u ml -1。对人体液体预处理的CA-19-9抗原的已知浓度进行严格测试证实了它们在检测糖蛋白方面的准确性和可靠性。这项研究表示临床生物标志物的电容式生物传感方面的显着进展,可能导致更容易获得和成本效益的护理解决方案。
图 3 (a) 基于皱纹石墨烯-AuNPs 混合结构的光电探测器集成在隐形眼镜上及其光响应。[31] 经皇家化学学会许可转载。(b) 当激光点照射电极之间的 rGO 区域时,会发生光伏响应,并且与激光点的位置有关。[32] 经 Springer Nature Limited 许可转载。(c) 用半导体量子点光电探测器敏化的柔性石墨烯的摄影图像和示意图。(d) 基于光电探测器的反射模式和透射模式 PPG 的光电容积图 (PPG) 的示意图和 (e) 摄影图像。(f) 光电探测器透射和反射模式的归一化 PPG 结果。[36] 经美国科学促进会许可转载。 (g)由五苯有机半导体、金纳米粒子(AuNPs)构成的柔性石墨烯光电探测器的示意图和照片图像。(h)石墨烯光电探测器的存储性能。[33] 经美国化学学会许可转载,版权所有。(i)柔性石墨烯/钙钛矿光电探测器阵列(24×24像素)的示意图和照片图像。(j)用于颜色辨别的柔性石墨烯/钙钛矿光电探测器图像传感器的示意图和相应的输出图像。[34] 经中国科学出版社许可转载。
内置于这架首架无任务、全服务直升机中。有了新系统,一个人就能在三分钟或更短的时间内装载重达两吨的军用物品。即使在苛刻的野外条件下,装载也可以在八分钟内完成。这个完全集成的系统利用了波音 V er l.ol 107 的直入式后装载坡道。它包括凹进的滚轮和货物梁,当它们存放在 107 内部时,可作为车轮的导轨。内置的液压绞盘可加速装载,机头朝上的地面高度允许快速重力或滑行卸载。装载系统不会干扰波音 V er l.ol 107 作为部队运输和部队散布的使用可以快速收起。沿着机身两侧,以允许其他“任务模块”使用-用于反潜战、陆地或海上救援、医疗空中后送、导弹阵地支援。