[4] Kisilevsky R. 从关节炎到阿尔茨海默病:关于淀粉样变性发病机制的最新概念。Can J Physiol Pharmacol,1987,65:1805-15 [5] György B、Lööv C、Zaborowski MP 等人。CRISPR/Cas9 介导的瑞典 APP 等位基因破坏作为早发性阿尔茨海默病的治疗方法。Mol Ther Nucleic Acids,2018,11:429-40 [6] Zetterberg H、Mattsson N. 了解散发性阿尔茨海默病的病因。Expert Rev Neurother,2014,14:621-30 [7] Jack CR Jr、Knopman DS、Jagust WJ 等人。阿尔茨海默病病理级联动态生物标志物的假设模型。Lancet Neurol,2010,9:119-28 [8] Ittner LM、Ke YD、Delerue F 等。tau 的树突状功能介导阿尔茨海默病小鼠模型中的淀粉样蛋白 β 毒性。Cell,2010,142:387-97 [9] Muralidar S、Ambi SV、Sekaran S 等。tau 蛋白在阿尔茨海默病中的作用:主要的病理因素。Int J Biol Macromol,2020,163:1599-617 [10] Wang X、Wang W、Li L 等。阿尔茨海默病中的氧化应激和线粒体功能障碍。 Biochim Biophys Acta, 2014, 1842: 1240-7 [11] Grothe M, Heinsen H, Teipel SJ. 成年年龄范围内以及阿尔茨海默病早期阶段胆碱能基底前脑萎缩。Biol Psychiatry, 2012, 71: 805-13 [12] He Y, Ruganzu JB, Jin H, et al. LRP1 敲低通过调节 TLR4/NF- κB/MAPKs 信号通路加重 Aβ 1-42 刺激的小胶质细胞和星形胶质细胞神经炎症反应。Exp Cell Res, 2020, 394: 112166 [13] Huang HC, Hong L, Chang P, et al.壳寡糖减弱Cu 2+诱导的细胞氧化损伤和细胞凋亡,涉及Nrf2激活。Neurotox Res,2015,27:411-20 [14] Tomljenovic L. 铝和阿尔茨海默病:经过一个世纪的争论,是否存在合理的联系?J Alzheimers Dis,2011,23:567-98 [15] Shen H,Guan Q,Zhang X,等。阿尔茨海默病神经炎症的新机制:肠道菌群介导的NLRP3炎症小体的激活。Prog Neuropsychopharmacol Biol Psychiatry,2020,100:109884 [16] Ferreira-Vieira TH,Guimaraes IM,Silva FR,等。阿尔茨海默病:针对胆碱能系统。Curr Neuropharmacol,2016,14:101-15 [17] Scannevin RH。针对神经退行性蛋白质错误折叠障碍的治疗策略。Curr Opin Chem Biol,2018,44:66-74 [18] Giau VV,Lee H,Shim KH 等人。CRISPR-Cas9 的基因组编辑应用促进阿尔茨海默病的体外研究。Clin Interv Aging,2018,13:221-33 [19] Gupta D,Bhattacharjee O,Mandal D 等人。CRISPR-Cas9 系统:基因编辑的新曙光。生命科学, 2019, 232: 116636 [20] Makarova KS, Wolf YI, Alkhnbashi OS, et al.更新了
生物和环境研究概述 生物和环境研究 (BER) 计划的使命是支持变革性科学和科学用户设施,以实现对复杂生物、地球和环境系统的预测性理解,从而实现清洁能源和气候创新。这项基础研究在全国各地的大学、能源部国家实验室和其他研究机构进行,重点研究可能影响美国能源系统的生物和生态系统,并促进对从地方到全球的能源、环境和气候科学之间关系的理解。BER 对基础研究的支持将有助于未来稳定、可靠和有弹性的能源和基础设施,进而有助于基于证据的公平气候解决方案。BER 内的研究可分为生物系统和地球与环境系统。生物系统研究旨在使用先进的基因组学结合综合实验、分析和建模技术来表征和预测性地理解微生物和植物系统。基于基础基因组学对这些系统功能的理解,为设计清洁能源生产的新创新流程奠定了基础,包括生物燃料和其他生物产品的可持续发展,以及新的碳管理实践。微生物群落的特征描述和理解将有助于更好地理解生物能源系统的功能和改进其设计,从而为化石燃料提供具有成本效益的替代品,并能抵御气候变化和其他环境干扰。地球和环境系统研究旨在描述和理解气候、环境和能源系统之间的相互依存关系,包括大气物理和化学、生态系统生态学和生物地球化学研究,以及开发和验证影响电网可靠性和弹性等的快速变化和/或极端现象的超高分辨率地球系统模型。这些模型整合了生物圈、大气、陆地、海洋、海冰和陆地冰、地下、能源技术、基础设施和其他相关人类组成部分的动态信息。为了促进这些领域的世界级研究,BER 支持使用最新技术的用户设施提供对大气、生物和生物地球化学过程的新观察和分析。此外,BER 研究利用先进的计算模拟和数据分析(包括人工智能 [AI] 和机器学习 [ML])来实现影响国家能源系统的极端现象的科学发现和技术解决方案。与科学界和联邦特许的 BER 咨询委员会的合作为 BER 的所有活动提供了信息。在过去 30 年里,BER 的科学影响是变革性的。通过美国能源部于 1990 年启动的美国支持的国际人类基因组计划绘制人类基因组图谱,开创了现代生物技术和基于基因组学的系统生物学的新时代。今天,BER 基因组科学活动和联合基因组研究所 (JGI) 的研究人员正在使用强大的基于基因组学的植物和微生物系统生物学工具进行早期研究,这将导致开发专用的生物能源作物和微生物系统,以生产各种可再生燃料、化学品和材料,为实现更碳中性的生物经济的清洁能源技术奠定基础。自 1950 年代以来,BER 及其前身组织一直对气候变化(包括大气、陆地、海洋、环境和人类系统)的基本科学理解作出了重要贡献。 BER 研究减少了模型预测中最大的不确定性,例如涉及云、气溶胶和碳的预测,并正在整合来自城市综合现场实验室 (UIFL) 等计划的新气候和能源基础设施观测,并提供对国家能源战略至关重要的气候和环境变化信息。能源部研究在利用 AI/ML、访问能源部最快的计算机以及基于各种观测和其他数据源进行验证方面取得了进展。BER 计划(例如 UIFL、CRC 和核心研究活动)扩大了 BER 生态系统的参与度,使其更能代表我们的国家。BER 投资可提高能力并帮助在新兴研究机构、服务不足的社区、传统黑人学院和大学 (HBCU) 和少数族裔服务机构 (MSI) 中培训新的能源劳动力。 2025 财年申请重点 2025 财年申请 9.452 亿美元,比 2023 财年颁布的水平增加 3650 万美元。BER 将通过一项新计划加强其对气候科学的研究,该计划侧重于基于气候变化与美国能源创新部署现实情景相互依存关系的高分辨率预测能力、增强的 UIFL 和气候中心网络,这些中心隶属于新兴研究机构、服务不足的社区以及 HBCU 和 MSI;扩大对 AI 方法的投资,以改善地球和环境系统的可预测性;并继续BER 基因组科学活动和联合基因组研究所 (JGI) 的研究人员正在使用强大的基于基因组学的植物和微生物系统生物学工具进行早期研究,这将导致开发专用的生物能源作物和微生物系统,以生产各种可再生燃料、化学品和材料,为实现更碳中性的生物经济的清洁能源技术奠定基础。自 1950 年代以来,BER 及其前身组织一直是气候变化(包括大气、陆地、海洋、环境和人类系统)基本科学理解的重要贡献者。BER 研究减少了模型预测中最大的不确定性,例如涉及云、气溶胶和碳的不确定性,并正在结合城市综合现场实验室 (UIFL) 等计划的新气候和能源基础设施观测,并提供对国家能源战略至关重要的气候和环境变化信息。能源部的研究在使用 AI/ML 提高气候模型的可靠性和预测能力、访问能源部最快的计算机以及基于多种观测和其他数据源进行验证方面取得了进展。 BER 计划(例如 UIFL、CRC 和核心研究活动)扩大了 BER 生态系统的参与度,使其更能代表我们的国家。BER 投资可提高能力并帮助在新兴研究机构、服务不足的社区、传统黑人学院和大学 (HBCU) 和少数族裔服务机构 (MSI) 培训新的能源劳动力。2025 财年申请重点 2025 财年申请 9.452 亿美元,比 2023 财年颁布的水平增加 3650 万美元。BER 将通过一项新计划加强其在气候科学方面的研究,该计划侧重于基于气候变化与美国能源创新部署现实情景相互依存关系的高分辨率预测能力、增强的 UIFL 和气候中心网络,这些中心隶属于新兴研究机构、服务不足的社区、HBCU 和 MSI;扩大对人工智能方法的投资,以提高地球和环境系统的可预测性;并继续BER 基因组科学活动和联合基因组研究所 (JGI) 的研究人员正在使用强大的基于基因组学的植物和微生物系统生物学工具进行早期研究,这将导致开发专用的生物能源作物和微生物系统,以生产各种可再生燃料、化学品和材料,为实现更碳中性的生物经济的清洁能源技术奠定基础。自 1950 年代以来,BER 及其前身组织一直是气候变化(包括大气、陆地、海洋、环境和人类系统)基本科学理解的重要贡献者。BER 研究减少了模型预测中最大的不确定性,例如涉及云、气溶胶和碳的不确定性,并正在结合城市综合现场实验室 (UIFL) 等计划的新气候和能源基础设施观测,并提供对国家能源战略至关重要的气候和环境变化信息。能源部的研究在使用 AI/ML 提高气候模型的可靠性和预测能力、访问能源部最快的计算机以及基于多种观测和其他数据源进行验证方面取得了进展。 BER 计划(例如 UIFL、CRC 和核心研究活动)扩大了 BER 生态系统的参与度,使其更能代表我们的国家。BER 投资可提高能力并帮助在新兴研究机构、服务不足的社区、传统黑人学院和大学 (HBCU) 和少数族裔服务机构 (MSI) 培训新的能源劳动力。2025 财年申请重点 2025 财年申请 9.452 亿美元,比 2023 财年颁布的水平增加 3650 万美元。BER 将通过一项新计划加强其在气候科学方面的研究,该计划侧重于基于气候变化与美国能源创新部署现实情景相互依存关系的高分辨率预测能力、增强的 UIFL 和气候中心网络,这些中心隶属于新兴研究机构、服务不足的社区、HBCU 和 MSI;扩大对人工智能方法的投资,以提高地球和环境系统的可预测性;并继续BER 研究减少了模型预测中最大的不确定性,例如涉及云、气溶胶和碳的预测,并正在整合来自城市综合现场实验室 (UIFL) 等计划的新气候和能源基础设施观测,并提供对国家能源战略至关重要的气候和环境变化信息。能源部研究在利用 AI/ML、访问能源部最快的计算机以及基于各种观测和其他数据源进行验证方面取得了进展。BER 计划(例如 UIFL、CRC 和核心研究活动)扩大了 BER 生态系统的参与度,使其更能代表我们的国家。BER 投资可提高能力并帮助在新兴研究机构、服务不足的社区、传统黑人学院和大学 (HBCU) 和少数族裔服务机构 (MSI) 中培训新的能源劳动力。 2025 财年申请重点 2025 财年申请 9.452 亿美元,比 2023 财年颁布的水平增加 3650 万美元。BER 将通过一项新计划加强其对气候科学的研究,该计划侧重于基于气候变化与美国能源创新部署现实情景相互依存关系的高分辨率预测能力、增强的 UIFL 和气候中心网络,这些中心隶属于新兴研究机构、服务不足的社区以及 HBCU 和 MSI;扩大对 AI 方法的投资,以改善地球和环境系统的可预测性;并继续BER 研究减少了模型预测中最大的不确定性,例如涉及云、气溶胶和碳的预测,并正在整合来自城市综合现场实验室 (UIFL) 等计划的新气候和能源基础设施观测,并提供对国家能源战略至关重要的气候和环境变化信息。能源部研究在利用 AI/ML、访问能源部最快的计算机以及基于各种观测和其他数据源进行验证方面取得了进展。BER 计划(例如 UIFL、CRC 和核心研究活动)扩大了 BER 生态系统的参与度,使其更能代表我们的国家。BER 投资可提高能力并帮助在新兴研究机构、服务不足的社区、传统黑人学院和大学 (HBCU) 和少数族裔服务机构 (MSI) 中培训新的能源劳动力。 2025 财年申请重点 2025 财年申请 9.452 亿美元,比 2023 财年颁布的水平增加 3650 万美元。BER 将通过一项新计划加强其对气候科学的研究,该计划侧重于基于气候变化与美国能源创新部署现实情景相互依存关系的高分辨率预测能力、增强的 UIFL 和气候中心网络,这些中心隶属于新兴研究机构、服务不足的社区以及 HBCU 和 MSI;扩大对 AI 方法的投资,以改善地球和环境系统的可预测性;并继续与新兴研究机构、服务不足的社区以及 HBCU 和 MSI 建立联系;扩大对人工智能方法的投资,以改善地球和环境系统的可预测性;并继续与新兴研究机构、服务不足的社区以及 HBCU 和 MSI 建立联系;扩大对人工智能方法的投资,以改善地球和环境系统的可预测性;并继续