1 印度韦洛尔基督教医学院干细胞研究中心(班加罗尔 inStem 的一个单位);2 印度特里凡得琅 Sree Chitra Tirunal 医学科学与技术研究所;3 美国伯克利加州大学伯克利分校创新基因组学研究所;4 美国旧金山格拉德斯通研究所数据科学与生物技术研究所;5 澳大利亚悉尼新南威尔士大学生物技术与生物分子科学学院;6 印度卡纳塔克邦马尼帕尔高等教育学院;7 印度韦洛尔基督教医学院暨医院血液学系;8 日本茨城县理化学研究所生物资源中心细胞工程部;9 日本红十字会中央血液研究所血液服务总部研究与开发部,日本东京;10 印度韦洛尔基督教医学院生物化学系; 11 加州大学洛杉矶分校微生物学、免疫学和分子遗传学系,美国洛杉矶;12 瑞士苏黎世生物系分子健康科学研究所
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
Invest , 2021 , 41 ( 1 ): 1-7.[7] 中华医学会 , 中华医学会杂志社 , 中华医学会全科医学分会 , 等 .
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
○ 哪些基因编码了红细胞镰状化?○ CRISPR-Cas9 在原核生物(如细菌)中的自然机制是什么,它是如何被修改并用于编辑真核生物(有细胞核的生物)中的基因的?○ CRISPR 基因编辑技术如何应用于镰状细胞病患者?
白质消失 (VWM) 是一种由 eIF2B 亚基隐性变异引起的白质营养不良。目前,尚无治愈性治疗方法,患者常常英年早逝。由于其单基因特性,VWM 是开发 CRISPR/Cas9 介导的基因治疗的有希望的候选对象。在这里,我们在 VWM 小鼠中测试了一种双 AAV 方法,该方法编码 CRISPR/Cas9 和 DNA 供体模板以纠正 Eif2b5 中的致病变异。我们进行了测序分析以评估基因纠正率,并检查了对 VWM 表型(包括运动行为)的影响。序列分析表明,在目标基因座处超过 90% 的 CRISPR/Cas9 诱导的编辑是插入或缺失 (indel) 突变,而不是通过同源定向修复从 DNA 供体模板进行的精确校正。大约一半的 CRISPR/Cas9 治疗动物过早死亡。 VWM 小鼠在 7 个月大时运动技能、体重或神经系统评分均未改善,而 CRISPR/Cas9 处理的对照组则表现出诱导的 VWM 表型。总之,CRISPR/Cas9 在 Eif2b5 基因座处诱导的 DNA 双链断裂 (DSB) 未导致 VWM 变异的充分校正。此外,Eif2b5 中的插入/缺失形成会加剧 VWM 表型。因此,DSB 独立的策略(如碱基编辑或主要编辑)可能更适合 VWM 校正。
1。smriti mallapaty。如何保护第一个“ CRISPR婴儿”引发道德辩论。自然。2022年2月25日。https://www.nature.com/articles/d41586-022-00512-w 2。Antonio Regalado。 CRISPR婴儿的创建者已从中国监狱释放出来。 MIT技术评论。 2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3. J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。Antonio Regalado。CRISPR婴儿的创建者已从中国监狱释放出来。MIT技术评论。 2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3. J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。MIT技术评论。2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3.J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。J. Benjamin Hurlbut。解码CRISPR的故事。MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。MIT技术评论。2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。David Cyranoski。什么Crispr-baby监狱判处男子进行研究。自然。2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。Patrick Foong。CRISPR婴儿:故事展开。Mercatornet。2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。海蒂·莱德福德(Heidi Ledford)。应该领导基因组编辑政策。2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。当归Peebles。CRISPR先驱期望在25年内看到基因编辑的婴儿。2022年4月4日。
文章标题:综述:真菌细胞中的 CRISPR/Cas12 介导的基因组编辑:植物真菌病理学的进展、机制和未来方向 作者:Chiti Agarwal[1] 所属机构:华盛顿州立大学 [1] Orcid ids:0000-0003-4125-2880[1] 联系电子邮件:chiti.agarwal@gmail.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当的引用。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并已提交给 ScienceOpen Preprints 进行开放同行评审。 DOI:10.14293/PR2199.000129.v2 预印本首次在线发布时间:2023 年 6 月 8 日 关键词:CRISPR、CRISPR/Cas12、真菌病原体、植物病原体
鲶鱼(Clarias sp.)的动物蛋白质含量足够高,可以满足人体的需要。要想培育出鲶鱼,无论在生产力、外观还是尺寸方面,都需要合适的技术,即CRISPR Cas9基因工程技术。压缩规律间隔短回文重复序列 (CRISPR) 是一种利用 Cas9 酶功能的变化来编辑基因组的现代技术。希望CRISPR技术能够在基因工程领域得到更多的认识和发展。编写本文所采用的方法是对 CRISPR Cas9 在水产养殖中使用的鲶鱼 (Clarias sp) 的发展中进行的文献研究。所用方法是对之前进行的几项研究进行文献研究并进行描述性分析。 CRISPR Cas9 技术可应用于转基因鲶鱼 (Clarias sp.),这得到了先前应用于鲑鱼科 (大西洋鲑)、罗非鱼 (Oreochromis niloticus)、斑马鱼 (Danio reiro) 和鲶鱼 (Ictalurus punctatus) 的研究成功的支持。通过CRISPR Cas 9技术形成转基因鲶鱼可以实现的前景包括加速生长发育、增大骨骼肌,从而增加鲶鱼的体重。