软件可靠性增长模型 [1] 适用于与测试期间经历的故障相关的时间序列数据,以预测达到所需故障强度或故障间隔时间等指标。从历史上看,人们采用了牛顿法等数值算法,这些算法需要良好的初始参数估计,因此应用 SRGM 需要高水平的专业知识。最近克服传统数值方法不稳定性的方法包括群体智能 [2] 等技术,它表现出强大的全局搜索能力。然而,这些技术可能需要大量的计算资源和时间来收敛到精确的最优值,这对 SRGM 很重要,因为一些模型参数对其他参数的精确估计非常敏感。此外,过去大多数应用群体智能的研究
由于机器人技术、人工智能和控制理论领域的许多激动人心的发展,三个曾经截然不同的课题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何在不撞到任何东西的情况下将钢琴从一个房间搬到另一个房间的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂问题。在人工智能中,规划最初意味着寻找一系列逻辑运算符或动作,将初始世界状态转化为期望的目标状态。目前,规划的范围超出了这一点,包括许多决策理论思想,如马尔可夫决策过程、不完全状态信息和博弈论均衡。虽然控制理论传统上关注稳定性、反馈和最优性等问题,但人们对设计用于为非线性系统找到可行开环轨迹的算法的兴趣日益浓厚。在本论文的某些部分中,已经应用了“运动规划”这一术语,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大,具有一个有趣的共同点。在本文中,我将以涵盖这一共同点的广义使用“规划”一词。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域中的所有重要内容。本演讲重点介绍与规划相关的算法问题。在机器人技术中,重点是通过处理复杂的几何模型来设计生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和最优性。分析技术占控制理论文献的大部分,但不是本演讲的重点。 “规划和控制”这个短语通常用于识别开发系统中的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略这些术语的历史含义,“规划”和“控制”可以用于
由于机器人技术、人工智能和控制理论领域的许多激动人心的发展,三个曾经截然不同的课题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何在不撞到任何东西的情况下将钢琴从一个房间搬到另一个房间的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂问题。在人工智能中,规划最初意味着寻找一系列逻辑运算符或动作,将初始世界状态转化为期望的目标状态。目前,规划的范围超出了这一点,包括许多决策理论思想,如马尔可夫决策过程、不完全状态信息和博弈论均衡。虽然控制理论传统上关注稳定性、反馈和最优性等问题,但人们对设计用于为非线性系统找到可行开环轨迹的算法的兴趣日益浓厚。在本论文的某些部分中,已经应用了“运动规划”这一术语,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大,具有一个有趣的共同点。在本文中,我将以涵盖这一共同点的广义使用“规划”一词。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域中的所有重要内容。本演讲重点介绍与规划相关的算法问题。在机器人技术中,重点是通过处理复杂的几何模型来设计生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和最优性。分析技术占控制理论文献的大部分,但不是本演讲的重点。 “规划和控制”这个短语通常用于识别开发系统中的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略这些术语的历史含义,“规划”和“控制”可以用于
由于机器人技术、人工智能和控制理论领域的许多令人兴奋的发展,三个曾经截然不同的主题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何将钢琴从一个房间搬到另一个房间而不撞到任何东西之类的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂因素。在人工智能中,规划最初意味着搜索一系列逻辑运算符或动作,将初始世界状态转换为期望的目标状态。目前,规划的范围已超出此范围,包括许多决策理论思想,如马尔可夫决策过程、不完美状态信息和博弈论均衡。虽然控制理论传统上关注的是稳定性、反馈和最优性等问题,但人们对设计寻找非线性系统可行开环轨迹的算法的兴趣日益浓厚。在某些工作中,“运动规划”一词已被应用,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大到共享一个有趣的共同点。在本文中,我以广义使用术语规划,涵盖了这一共同点。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域的所有重要内容。本演示重点介绍与规划相关的算法问题。在机器人技术中,重点是通过处理复杂的几何模型来设计生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和优化。占控制理论文献大部分的分析技术不是这里的主要焦点。“规划和控制”这个短语通常用于识别开发系统时的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略术语带来的历史内涵,“规划”和“控制”可以使用
由于机器人技术、人工智能和控制理论领域的许多令人兴奋的发展,三个曾经截然不同的课题现在正走向碰撞。在机器人技术中,运动规划最初关注的是诸如如何在不撞到任何东西的情况下将钢琴从一个房间搬到另一个房间的问题。然而,该领域已经发展到包括不确定性、多个物体和动态等复杂问题。在人工智能中,规划最初意味着寻找一系列逻辑运算符或动作,将初始世界状态转化为期望的目标状态。目前,规划的范围超出了这一点,包括许多决策理论思想,如马尔可夫决策过程、不完全状态信息和博弈论均衡。虽然控制理论传统上关注稳定性、反馈和最优性等问题,但人们对设计用于为非线性系统找到可行开环轨迹的算法的兴趣日益浓厚。在本论文的某些部分中,已经应用了“运动规划”这一术语,但其解释与机器人技术中的用法不同。因此,尽管机器人技术、人工智能和控制理论领域最初考虑的是不同的问题,但它们的范围已经扩大,具有一个有趣的共同点。在本文中,我将以涵盖这一共同点的广义使用“规划”一词。但这并不意味着该术语涵盖机器人技术、人工智能和控制理论领域中的所有重要内容。本演讲重点介绍与规划相关的算法问题。在机器人技术中,重点是设计通过处理复杂几何模型来生成有用运动的算法。在人工智能中,重点是设计使用决策理论模型来计算适当动作的系统。在控制理论中,重点是计算系统可行轨迹的算法,并额外涉及反馈和最优性。分析技术占控制理论文献的大部分,但不是本演讲的重点。 “规划和控制”这个短语通常用于识别开发系统中的互补问题。规划通常被认为是比控制更高级别的过程。在本文中,我没有做这样的区分。忽略这些术语的历史含义,“规划”和“控制”可以用于
关键词:物体检测、神经网络、摄像机跟踪、摄影测量、文化遗产、度量质量评估 摘要:寻找适合摄影测量的材料是文化遗产记录的关键部分。摄影测量可用于生成经过度量认证的 3D 模型。当文化遗产丢失时,历史电影镜头档案中包含的材料对于记录特别有用。在本研究中,提出了一种创新的匹配移动方法,旨在利用人工智能和 SfM 算法来识别从电影镜头中提取的出现丢失古迹的帧,这些帧适合用摄影测量处理以进行 3D 重建。首先,通过训练物体检测神经网络对视频中的文化遗产进行识别和跟踪。然后,使用包含古迹的边界框的坐标自动提取检测到的帧。通过仅选择从同一场景的多个角度拍摄的照片并分析边界框位置随时间的变化来识别相机运动。需要进一步检查材料以仅选择序列并消除来自不同历史时期的单帧和图像。在此过程之后,仅自动选择正确的帧并用摄影测量法处理,并评估获得的 3D 模型的质量。本研究中实验的方法代表了文化遗产领域的一种强大工具,因为它可以自动选择适合摄影测量的材料。此外,它提供了可以扩展到其他领域的重要见解。
摘要 - 物联网(IoT)是Internet的高级版本,其中不仅是连接到Internet的手机和计算机,而且其他电子对象也可以连接到Internet。物联网(IoT)需要使用IPv6协议来满足大量周围事物的需求。在设备之间的这种无线通信方式中所面临的挑战是信息的安全性和个人的隐私。在本文中提出了一种加密方法,该方法利用MD5和AES算法来获得安全和隐私。使用Verilog HDL在ModelsIM 6.5和Xilinx 14.2工具中模拟了这两种算法。两次链接两种算法的链接方法提供了更好的安全性和隐私。将这些算法整合到RFID标签中,可以在周围事物之间存在安全的交流手段,从而为接受社会上的物联网腾出空间。索引术语:物联网; rfid; aes; MD5;机密性;正直; vlsi。