IE CAR-T-ZELL疗法表明,当患者的T细胞专门为针对癌细胞的攻击做准备时,可以加强人体对Leukämien和淋巴瘤的免疫防御。 使用CAR-T细胞疗法的使用仅限于某些淋巴瘤和白血病的治疗。 使用表面蛋白CD19或在多个mylom的情况下,癌细胞上的攻击区域以“ B细胞成熟抗原”(BCMA)知道。 在实体瘤中,选择合适的目标更难。 对于每种类型的癌症,甚至可能对于每个患者,都必须首先确定目标,然后搜索合适的防御细胞。 新抗原是承诺的靶标,狭窄的蛋白质是理想的,由于频繁突变而发生癌症的形成。 这些新抗原呈现在肿瘤细胞表面的T细胞上。 T细胞识别具有T细胞受体(TCR)的NEO抗原,每个抗原专门用于抗原。 您会意识到新抗原,攻击和细胞的破坏将开始。 将通过旧金山的初创公司PACT Pharma的Stefanie Mandl领导的新待遇来加强这一攻击;结果在自然界(1)中呈现。 在第一个“概念证明”研究中,可以在体内的肿瘤中证明修饰的T细胞,并暂时停止生长。IE CAR-T-ZELL疗法表明,当患者的T细胞专门为针对癌细胞的攻击做准备时,可以加强人体对Leukämien和淋巴瘤的免疫防御。使用CAR-T细胞疗法的使用仅限于某些淋巴瘤和白血病的治疗。攻击区域以“ B细胞成熟抗原”(BCMA)知道。在实体瘤中,选择合适的目标更难。对于每种类型的癌症,甚至可能对于每个患者,都必须首先确定目标,然后搜索合适的防御细胞。新抗原是承诺的靶标,狭窄的蛋白质是理想的,由于频繁突变而发生癌症的形成。这些新抗原呈现在肿瘤细胞表面的T细胞上。T细胞识别具有T细胞受体(TCR)的NEO抗原,每个抗原专门用于抗原。您会意识到新抗原,攻击和细胞的破坏将开始。将通过旧金山的初创公司PACT Pharma的Stefanie Mandl领导的新待遇来加强这一攻击;结果在自然界(1)中呈现。在第一个“概念证明”研究中,可以在体内的肿瘤中证明修饰的T细胞,并暂时停止生长。第一步是在各自肿瘤中寻找合适的NEO抗原。然后在实验室中产生这些新抗原。他们用作诱饵,以追踪能够用TCR追踪NEO抗原的患者血液中的T细胞。堡垒然后将“ neotcr”的基因与细胞中的基因绝缘,并使用基因剪刀CRISPR-CAS9将其安装到其他T细胞中;先前从基因组中取出旧的TCR基因。对于随后的自然修复(同型重组),为“ NeoTCR”的信息提供了基因片段。
nxp®半导体通过联邦经济和气候保护部(BMWK)的赠款加强了德国在德国的欧洲研发计划,这是第二个欧洲第二个欧洲对微电子和通信技术的重要项目的一部分”(IPCEI ME/CT)。最终的投资决定取决于确认公共资金金额。汉堡,慕尼黑和德累斯顿的NXP团队将专注于用于自动驾驶,沟通和量子后加密术的关键技术,以促进其开发和应用。活动包括四个IPCEI ME/CT工作场中的三个:“ Think”,“ Sense”和“ Communicate”。nxp为技术弹性以及欧洲数字和绿色转型的实施做出了重要贡献。通过与大学和领先的技术公司(例如Rohde&Schwarz and Smartmicro)进行密切合作,NXP可以利用德国和欧洲的广泛专业知识。在此基础上,开发了顶级技术和产品,将进一步增强欧洲的竞争力。“我们对欧盟委员会和BMWK的意图感到非常高兴“我们对关键技术的投资将增强欧洲在微电子方面的技能。下一代微电子学的发展与在未来地区建立长期基础设施和专业知识密切相关。这与NXP的计划合资企业与TSMC的第一家欧洲铸造厂的参与息息相关,并强调了我们对更多创新和欧洲更稳定的供应链的承诺。 ”“ NXP是一家欧洲扎根的公司,拥有强大的德国地点。通过该项目,它对可持续的半导体为对欧洲和德国的更稳定的护理做出了重要贡献。NXP的研发工作扩展了四个IPCEI ME/CT领域中的三个:“ Think”,“ Sense”和“ Communicate”。在“ Think”领域,主要位于慕尼黑,该公司专注于在5纳米中的中央汽车技术开发,该汽车领域的高性能微处理器和
定向能(RE)的概念是一个通用术语,涵盖产生具有一定功率和强度的电磁能的技术。 AE 系统主要使用这种定向能量来破坏、损坏或摧毁敌方装备、设施和人员。具有一定军事发展水平的国家(例如美国、英国、俄罗斯、中国、印度、以色列、法兰西共和国、韩国、土耳其共和国等)长期以来都开展与能源系统直接相关的研发(R&D)活动。我们撰写本报告的最终目标是介绍近期、中期和远期可能在相关部队指挥部门的清单中出现的 RE 系统应用和挑战。当今,科学技术发展十分迅速。其中一些人已经意识到与生物技术、纳米技术和可再生能源相关的技术威胁,并采取了必要的预防措施。在这种背景下,虽然可再生能源面临一些传统的挑战;有望成为一场变革游戏规则的变革者。直到最近,激光系统才开始发挥其进步的贡献,它能够将能量聚焦在精确确定的点上,并发射(可调节的)单波长(单色)光束,并在国防工业平台中作为测距系统发挥作用,以提高动能武器或用于中和敌方光学设备的眩目器的能力和效能;现在它正慢慢地被主要武器本身取代,而不是间接地取代。因此,最近的技术进步使激光成为可再生能源应用的主要候选者。可再生能源技术正在迅速发展,目前已开始应用于军事用途。可再生能源系统支持在军事领域发展的国家的国家安全优先事项;例如,对于美国陆军来说,五角大楼正在探索提高可再生能源能力的方法,从而在所有平台(陆地、空中、海上和太空)上取得军事优势。
植物育种是农业的基石之一。通过开发适应地点和产量优化的品种,它对维持和提高农业土地生产力做出了重大贡献。它在适应气候变化和更有效地利用资源方面也发挥着重要作用。现代植物育种是研究密集型的,依赖于公共和私人研究的互动。国际上,植物育种的结构已经发生了相当大的变化。不过,除了一些全球最大的公司外,德国的养殖业仍然主要由中型公司主导。促进植物育种和育种研究被视为一项重要的公共任务,这不仅是为了未来的供给,也是为了研究和创新政策。在此背景下,教育、研究与技术评估委员会根据食品和农业委员会的建议,委托德国联邦议院技术评估办公室(TAB)在节约资源、可持续农业的要求背景下,针对气候变化、生物多样性丧失、世界人口增长的需求以及未来生物经济的生物质要求,委托德国植物育种(传统和有机)的潜力和任务、优势和劣势进行概述。最终的TAB报告提供了有关植物育种的目标和方法以及植物品种和专利保护、种子审批和获取全球遗传资源的国家和国际法律法规的信息。从描述全球和欧洲种子市场开始,介绍了德国植物育种的私人、公共和非营利参与者及其商业模式。特别关注德国农业生物多样性的现状和发展趋势,包括生产系统、作物种类和品种多样性(包括遗传多样性)。介绍了促进农业生物多样性的机遇以及当前科学技术发展给(德国)植物育种带来的挑战、需求变化的影响、环境和能源政策以及遗传资源和植物品种的使用和保护的法律框架。由此,可以得出政治和社会行动选择,以加强多样化和促进多样性的植物育种。
本研究重点探讨学前教育的重要性和目的范围内技术在教育管理中的应用。学前教育涵盖儿童各个方面的发展,同时也使儿童能够更有生产力和创造力,并最大限度地发挥其潜力。在学龄前时期,当孩子们为生活做好了准备时,他们可以通过养成某些习惯和进行个性化发展在社会中展现自己的身份。在此期间,由丰富刺激组成的物质环境通过支持孩子的学习体验和所有发展领域,有助于成功完成教育过程。学龄前阶段,即生命的最初六年,是儿童发展最快、与社会互动最有效的时期。在大脑发育快速发展的这些年里,与社会环境的互动和刺激支持着孩子的多方面发展。所有受到的刺激都会对孩子的心理健康和思维能力产生影响。当对孩子的大脑发育和心理健康进行整体评估时,人们会更好地理解环境因素的重要性,并让孩子在健康的环境中完成其发展。在这样的背景下,科技已经渗透到了生活的方方面面,从学龄前开始就接触到了每一个受众,让孩子们在很小的时候就熟悉了科技设备。随着科技设备的使用越来越广泛,关于它为儿童生活增添的维度的各种学术讨论也纷纷出现。这些讨论的结果是,人们得出结论:技术对儿童发展构成了风险。原因是触摸屏控制了孩子的生活,使他/她面临各种疾病的同时还与社会隔绝。随着近年来科技活动的增加,儿童花在科技上的时间也以同样的速度增加。尽管许多研究人员和教育工作者都提倡儿童从学前开始使用科技学习的重要性,并致力于研究和实施与科技相关的应用,但幼儿使用科技对其发展的影响仍然存在争议。因此,有必要提供一种类型学来有效地概念化影响儿童利用技术学习的关键因素之间的相互作用。
恩智浦在 IPCEI ME/CT 资助的帮助下扩大了在欧洲的研发范围 • 这些资助由奥地利、德国、荷兰和罗马尼亚各自的部委提供 • 通过计划中的投资,恩智浦强调了其对欧洲更大创新和更大供应链稳定性的承诺,并在最近宣布的计划合资建设第一家欧洲台积电工厂的基础上再接再厉 荷兰埃因霍温,2023 年 9 月 19 日——恩智浦半导体公司 (NXP Semiconductors NV) (纳斯达克股票代码:NXPI) 正在通过各自国家提供的资助加强其在欧洲的研发,这是第二个欧洲“欧洲共同利益微电子和通信技术重要项目”(IPCEI ME/CT) 的一部分。最终的投资决定有待公共资金数额的确认。恩智浦位于奥地利、德国、荷兰和罗马尼亚的专门团队将为汽车、工业和网络安全领域开发创新。其中包括5纳米技术、先进的汽车驾驶辅助和电池管理系统、6G和超宽带,以及人工智能、RISC-V和后量子密码学。恩智浦总裁兼首席执行官 Kurt Sievers 表示:“恩智浦计划利用 IPCEI ME/CT 资金对奥地利、德国、荷兰和罗马尼亚的工厂进行投资,彰显了我们致力于为实现欧洲数字化和绿色转型做出重大贡献的承诺。” “它们强调了我们对欧洲更大创新和更大供应链稳定性的承诺,并对恩智浦计划参与台积电第一家欧洲代工厂的合资业务进行了补充。我们坚信扩大研究、开发和生产对欧洲至关重要。必须成功巩固这三个关键要素,才能增强欧洲半导体生态系统的弹性。”四国多个基地的广泛研发能力使得恩智浦能够推动创新,为欧盟工业战略的实施做出重要贡献。该公司将与来自欧洲各地工业和学术界的 50 多个合作伙伴组成的强大生态系统一起,专注于欧洲关键技术的发展。目前,没有其他参与IPCEI ME/CT的微电子公司计划在如此多的欧洲成员国进行投资。此外,恩智浦积极参与IPCEI ME/CT四个工作领域中的三个:“感知”、“思考”和“沟通”,这体现了恩智浦的领先领域和战略重点。继宣布对奥地利、德国、荷兰和罗马尼亚的投资计划后,该公司将与台积电、博世、英飞凌等共同成立一家名为ESMC(欧洲半导体制造公司)的合资公司,建设台积电在欧洲首个半导体制造工厂。计划中的300毫米半导体制造厂将建在德累斯顿,预计每月产能为4万片300毫米(12英寸)晶圆,采用台积电28/22纳米平面CMOS和16/12纳米FinFET工艺技术。合资企业将通过现代 FinFET 晶体管技术进一步加强欧洲半导体生态系统,并创造约 2,000 个新的高素质就业岗位。
大麻sativa及其在炎症性风湿病中的使用1.)可能的作用机理,有效物质,现有的历史背景制备大麻(HEMP)作为用户和药用植物具有千年的传统。将大麻的使用被提及大约5000年前的中药中,并在埃及,希腊,印度和中东文化中进行了描述(1)。威廉·奥肖尼斯(William O'Shaughnessy)于19日中期出版于西药世纪致力于印度大麻对健康动物和人类的影响,例如风湿病,疏水恐惧症,霍乱,破伤风和类似儿童的抗魔力(2)。化学组成和药理学效应有三种大麻的亚种:大麻sativa,大麻indica和大麻ruderis。大麻sativa是最广泛的植物,它是出于商业和药物目的而生长的(3)。确定的是104多种植物大麻素作为植物的活性物质。还包含植物萜类化合物,类黄酮,含氮化合物和其他复杂的植物分子(4)。。除了THC和CBD,大麻醇和大麻菌(CBC),大麻蛋白,Delta9-tetrahydrocantanbivarin和Cannabigerol(CBG)之外,还以进一步的phytocannabinoids进行了科学研究。thc和cbd的水 - 溶剂差,但在大多数有机溶剂中具有良好的溶解度(5)。在过去的几十年中,THC具有广泛的科学兴趣,其特征是高亲脂性高,并且在强烈血管化的组织中快速分布(6)。THC负责精神活性作用,因为它是1型(CB1)大麻素受体的部分激动剂。CB1受体代表了中枢神经系统中配体的最大结合位点,其在小脑,脑干和边缘系统中的表达(7),但也在胃肠道,巨噬细胞,肥大细胞和角质形成细胞上(8)。cbd反过来对CB1和CB2大麻素受体的亲和力非常低(CBR1和CBR2)(9)。实验研究表明,CBD可以通过各种机制激活CBR1(10.11)。CBD也是5-羟色胺-5-HT1A受体(12)和瞬态受体电位香草型1(TRPV1)受体(13)的激动剂。CBD能够通过抑制腺苷的失活来增加腺苷受体的信号效应,这表明在疼痛和炎症中可能具有治疗作用(14)。在皮肤的内源性大麻素系统(EC)发现后,在表皮角质形成细胞,黑素细胞,真皮细胞,肥大细胞,肥大细胞,汗腺,汗腺,毛囊和皮肤神经纤维(15)中发现了两个大麻素受体CBR1和CBR2。疾病似乎有助于皮肤疾病的发展(18)。这些结果表明,ECS在维持体内平衡,皮肤的障碍和神经免疫内分泌功能的调节方面起着决定性的作用(16:17)。对大麻素受体,选择性激动剂,拮抗剂和其他可以调节镜子的调节活性成分的研究以及内源性大麻素在炎症过程中的作用提供了广泛的证据,证明了EC的众多免疫调节和抗炎作用(19)。大麻在皮肤病学中的局部使用不仅可以用植物大麻素来证明。已知大麻籽油由于其高比例