CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
癌症免疫疗法已通过刺激宿主免疫系统识别和攻击癌细胞来治疗多种恶性肿瘤。免疫原性细胞死亡(ICD)可以扩增抗肿瘤免疫反应并逆转免疫抑制性肿瘤微环境,从而提高癌症免疫疗法的敏感性。近年来,非编码RNA(NCRNA)已成为ICD和肿瘤免疫的关键调节因素。因此,与ICD相关的NCRNA有望成为优化癌症免疫疗法有效性的新型治疗靶标。然而,尚未全面总结与ICD相关的NCRNA的免疫调节特性。因此,我们总结了有关ICD涉及的NCRNA的当前知识及其在癌症免疫疗法中的潜在作用。它加深了我们对与ICD相关的NCRNA的理解,并通过特定针对ICD相关的NCRNA提供了一种新的策略来增强癌症免疫疗法。
可以使用水域周围的生物群来对汞废物污染进行生理监测。这项研究旨在以分子方法来鉴定Kejapanan,Pasuruan,East Java的水域的浓度和蠕虫的类型。使用线粒体基因组COI条形码引物进行靶基因扩增。通过DNA分析和系统发育,相似性,DNA序列变异,遗传距离和粗体系统进行分子鉴定的分析。使用AAS分析了浓度Hg,并使用SEM EDAX映射分析了蠕虫中汞的分布。结果表明,与其他位置相比,污染物源面积(ST2样品)的汞浓度最高。分子鉴定的结果表明形成了两个簇。根据靶标(600-700 bp),放大的样品产生了DNA带,并以形态基于形态的关键识别继续该过程。结果表明,它们由Nadidae家族组成,其中有两个物种,即Hoffmeisteri和Branchiura Sowerbyi。DNA长度为709 bp以及核苷酸组成。爆炸结果表明,霍夫米斯特氏乳杆菌和B. sowerbyi物种的相似性指数分别为99%和86%。基于研究结果,发现在受污染区域蠕虫中存在汞暴露的积累。因此,这项研究的结果可以提供新颖性,即使用条形码数据可以将蠕虫用作水污染的生物监测。
生殖特异性小 RNA 是动物和植物生殖系发育的重要调节因子。microRNA2118 (miR2118) 在植物中是保守的,可诱导阶段性小干扰 RNA (phasiRNA) 的产生。为了揭示 miR2118 的生物学功能,我们在此描述了 miR2118 簇大量缺失的水稻突变体。我们的结果表明,miR2118 的缺失会导致水稻严重的雄性和雌性不育,并伴有体细胞花药壁细胞的明显形态和发育异常。小 RNA 分析表明,花药壁中依赖 miR2118 的 21 核苷酸 (nt) phasiRNA 富含 U,与生殖细胞中的 phasiRNA 不同。此外,miR2118 依赖的 21-nt phasiRNA 生物合成可能涉及 Argonaute 蛋白 OsAGO1b/OsAGO1d,这些蛋白在花药壁细胞层中含量丰富。我们的研究突出了体细胞花药壁和生殖细胞之间 phasiRNA 的位点特异性差异,并证明了 miR2118/U-phasiRNA 在花药壁发育和水稻繁殖中发挥的重要作用。
单细胞 RNA 测序 (scRNA-seq) 是一种相对较新的技术,它通过描述单个细胞之间的转录组差异,提供了前所未有的细胞异质性和功能详细视图。这将允许在生理和病理过程中映射细胞类型特异性信号,从而在现有的许多离散簇之间建立高度特异性的细胞信号网络模型。因此,该技术提供了一种强大的方法来剖析导致自身免疫性疾病(包括类风湿性关节炎 (RA))的细胞和分子机制。scRNA-seq 可以提供有关 RA 独特细胞状态和转变的宝贵见解,有可能开发新的药物靶点。然而,一些挑战仍然限制了它的主流应用,包括成本较高、对低丰度转录本的灵敏度较低以及与批量或传统 RNA 测序相比相对复杂的数据分析工作流程。这篇小评论探讨了 scRNA-seq 在 RA 研究中新兴的应用,强调了其在产生重要见解方面的作用,这些见解有助于为创新和更有效的治疗策略铺平道路。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
• 将您的免疫接种记录保存在安全的地方。您可以在 MyHealthNB 上在线注册以获取您的 COVID-19 免疫接种记录。接种疫苗时提供的纸质 COVID-19 免疫接种记录将继续作为官方记录。保留一份副本并拍照。纸质副本或副本照片可作为进入 NB 企业的疫苗接种证明
a 英国牛津大学医学科学部儿科系;b 瑞典哥德堡阿斯利康公司寡核苷酸化学、发现科学、生物制药研发部;c 加拿大安大略省麦克马斯特大学化学与化学生物学系;d 英国伦敦 MiNA 治疗学、翻译与创新中心;e 瑞士苏黎世联邦理工学院化学与应用生物科学系药物科学研究所;f 英国伦敦 Sixfold 生物科学、翻译与创新中心;g 瑞典卡罗琳斯卡医学院生物科学与营养系;h 瑞典哥德堡阿斯利康公司机械与结构生物学、发现科学、生物制药研发部;i 德国维尔茨堡亥姆霍兹 RNA 感染研究中心(Hzi)亥姆霍兹感染研究所(Hiri); j RNA 生物学组,维尔茨堡大学分子感染生物学研究所,德国维尔茨堡
摘要 回顾近年来的亨廷顿舞蹈症动物模型,发现许多microRNA在纹状体和大脑皮层中的表达水平发生改变,且大多下调。发生改变的microRNA包括miR-9/9*、miR-29b、miR- 124a、miR-132、miR-128、miR-139、miR-122、miR-138、miR-23b、miR-135b、miR- 181(均下调)和miR-448(上调),类似的变化此前也在亨廷顿舞蹈症患者中发现过。在动物细胞研究中,发生改变的microRNA包括miR-9、miR-9*、miR-135b、miR-222(均下调)和miR-214(上调)。在动物模型中,miR-155 和 miR-196a 的过表达导致突变型亨廷顿蛋白 mRNA 和蛋白质水平下降,纹状体和皮质中的突变型亨廷顿蛋白聚集体降低,并改善行为测试中的表现。miR-132 和 miR-124 的过表达也使行为测试中的表现得到改善。在动物细胞模型中,miR-22 的过表达增加了感染突变型亨廷顿蛋白的大鼠原代皮质和纹状体神经元的活力,并减少了 ≥ 2 µm 的亨廷顿蛋白富集灶。此外,miR-22 的过表达提高了用 3-硝基丙酸处理的大鼠原代纹状体神经元的存活率。外源性表达 miR-214、miR-146a、miR-150 和 miR-125b 会降低 Hdh Q111 / Hdh Q111 细胞中内源性亨廷顿蛋白 mRNA 和蛋白质的表达。有必要对亨廷顿氏病动物模型进行进一步研究,以验证这些发现,并确定特定的microRNA,它们的过度表达可抑制突变亨廷顿蛋白的产生和其他有害过程,并可能为治疗亨廷顿氏病患者和减缓其进展提供更有效的方法。关键词:动物模型;大脑皮层;亨廷顿蛋白;亨廷顿氏病;microRNA;神经退行性;纹状体;治疗策略