启动子因它“促进”基因表达而得名。该碱基序列控制转录起始的准确位置。大部分启动子位于基因转录实际开始位点的正前方或上游。按照惯例,启动子序列中的碱基是相对于转录起始位点进行编号的。此位点是用作转录模板的第一个碱基,记为 +1。此位点之前的碱基按负方向编号。没有碱基被编号为零。因此,大部分启动子都用负数标记,以描述转录开始前的碱基数。启动子序列内有两个重要序列,位于大约 −35 和 −10 位点。−35 位点顶部 DNA 链中的序列为 5′–TTGACA–3′,−10 位点的序列为 5′–TATAAT–3′。 TATAAT 序列以 1975 年首次发现该序列的 David Pribnow 的名字命名为 Pribnow 盒。
病毒 RNA 分子含有多层调控信息。这包括一级序列以外的特征,例如 RNA 结构和 RNA 修饰,包括 N6-甲基腺苷 (m 6 A)。许多近期研究已确定病毒 RNA 中 m 6 A 的存在和位置,并发现这种修饰在病毒感染过程中具有多种调控作用。然而,迄今为止,病毒 m 6 A 映射策略存在局限性,阻碍了对 m 6 A 对单个病毒 RNA 分子功能的全面了解。虽然已在许多病毒的大量 RNA 上分析了 m 6 A 位点,但迄今为止描述的病毒 RNA 的 m 6 A 图谱呈现了受感染细胞中病毒 RNA 分子中 m 6 A 的综合图像。因此,对于大多数病毒而言,尚不清楚在整个感染过程中是否存在独特的病毒 m6A 谱,也不清楚它们是否调节特定的病毒生命周期阶段。在这里,我们描述了定义 m6A 在病毒 RNA 分子中的功能的几个挑战,并为未来的研究提供了一个框架,以帮助理解 m6A 如何调节病毒感染。
现在,您一定已经熟悉了真核生物的蛋白质编码基因指导相应 RNA 分子合成的过程。这个过程称为转录,发生在原核生物和真核生物中。原核生物中的过程更简单。原核生物只有一种 RNA 聚合酶,负责合成 mRNA 以及所有其他类型的 RNA 分子。此外,刚刚合成的 mRNA 能够指导蛋白质合成,因为细菌 mRNA 不需要进一步处理即可翻译。另一方面,真核生物有三种不同类型的 RNA 聚合酶,真核 mRNA 的合成由 RNA 聚合酶 II 催化,使用 dsDNA 的一条链作为模板。这个过程发生在细胞核中,由此产生的 RNA 分子被称为 hnRNA(异质核 RNA),因为它们
在60多年前提出了分子生物学的中心教条时,mRNA被假定为瞬态信使或不稳定的中间体,并将核糖体提供信息以供蛋白质合成(Brenner等,1961; Crick,1958; Gros et al。,1961)。随着对基因表达的研究,转录后调节的重要性,RNA世界的证据和RNA的中心性得到了极大的认识(Gilbert,1986; Sharp,2009)。因此,对RNA代谢的机械理解提供了有关基于RNA的技术和治疗学的新见解(Damase等,2021)。特定基因由CRISPR-CAS基因组编辑平台中的指导RNA(GRNA)靶向,而mRNA表达则由反义寡核苷酸(ASOS)和RNA干扰(RNAI)技术调节。这些功能丧失方法是针对疾病中致病基因表达的,并且正在演变为有前途的治疗剂。同样,功能获取的方法已成为一种有吸引力的治疗性,这是通过在2019年冠状病毒病(COVID-19)大流行期间引入的有效mRNA疫苗技术的明显说明的。在有关“生物学和治疗学的RNA”的特刊中,我们描述了RNA生物学的基本概念如何转化为新型治疗学(图1)。在第一篇文章中,达娜·卡罗尔(Dana Carroll)(犹他大学)回顾了CRISPR-CAS基因组编辑平台的一般原则以及基础编辑技术的最新进展。CRISPR-CAS技术的临床应用得到了很好的总结,还讨论了基于CRISPR的疗法的其他问题;后者中的一些也可能适用于其他基于RNA的治疗应用。
- 淋巴回流受损和四肢肿胀 - 未排出的间质液/淋巴液积聚。它可能发生在癌症手术和淋巴结切除后。事实上,10-15% 的女性在乳腺癌康复后会出现手臂继发性淋巴水肿。淋巴水肿没有治愈方法。Theralymph 临床计划的主要目标是建立一种针对继发性淋巴水肿的多基因疗法,基于两种因子的瞬时表达,允许恢复正常的淋巴功能。FlashRNA ® 将用于通过皮内注射递送两种治疗性 RNA。
接种疫苗后的症状 一些症状可能是由疫苗引起的(例如注射部位疼痛)。其他问题可能偶然发生,与疫苗无关(例如感冒、胃痛)。大多数反应是无害的,不会持续很长时间。儿童和 55 岁及以上的人群中反应较少。这些反应更常发生在第二剂后。
2019 1。Cunningham-Bryant,D.,Sun,J.,Fernandez,B。和Zalatan,J.G。CRISPR-CAS介导的酵母转录动力学的化学控制。Chembiochem。6月14日; 20(12):1519–1523。应用:使用GRNA与MS2结构域的诱导CRISPRA募集包含融合到诱导型激活剂和DCAS9的MS2外套蛋白的复合物。2。Taghbalout,A。等。通过Casilio-Me介导的RNA引导的甲基胞苷氧化和DNA修复途径的RNA引导的偶联增强了基于CRISPR的DNA去甲基化。自然通讯。10(4296)。doi.org/10.1038/S41467-019-12339-7应用:使用具有MS2结构域的GRNA,DCAS9,DCAS9和MS2涂层蛋白融合到DNA脱甲基化结构域。3。Tran,N.T。等。通过Cas9与同源重组因子的关联增强精确基因编辑。遗传学的前沿。10(365)。doi:10.3389/fgene.2019.00365应用:使用具有MS2域的GRNA以及Cas9和MS2涂层蛋白融合到同源性修复(HDR)的增强子。