和受影响细胞的转录组(图2a – d)。例如,RNA干扰(RNAI)通过利用序列特异性抑制基因表达来干扰蛋白质翻译,显示出慢性疼痛治疗的希望,并批准了几种基于RNAI的方法在各种非神经疾病疾病条件下用于临床使用16。慢性疼痛疗法的另一种潜在适用方法使用反义寡核苷酸(ASOS),该方法在转录组水平上起作用以干扰mRNA加工,从而导致感兴趣的蛋白质耗尽并抑制其功能17。但是,RNAi和基于ASO的干扰都在效率以及细胞或组织特异性方面都有局限性。18,19。尽管基因递送方法有了重大改进,但针对特定细胞感兴趣的载体(例如患者的主要感觉神经元)仍然是一个挑战,这阻碍了将实验疗法转化为临床用途。基因编辑中赢得诺贝尔奖的发现为各种治疗性干预措施带来了激动的机会,在单个或小组的核酸的水平上进行了操纵以及调节元素,从而提供了调整细胞活性的前景,包括一组细胞的活性,包括一级SORY NEURONS NEURONS NEURONS 20,20,21 21。例如,CRISPR – CAS9系统允许在DNA水平上进行分子修改,并具有主要的转化前景(图2d)。CRISPR干扰的精度优于RNAi和ASO,部分原因是,与靶向mRNA的干扰方法不同,DCAS9可以在转录水平上进行选择性操纵。正在为改善和扩展CRISPR系统的努力,以提高功效和安全性,包括使用基因组或CRISPR干扰系统中使用催化无效的CAS9 CAS9酶(Dead cas9(DCAS9))在基因组或CRIS PR的干扰系统中进行调整,从而抑制转录的转录,而不会改变DNA序列中的DNA序列,而不会改变基因组序列2222。采用了作用于RNA(ADAR)或催化无效的CAS13的腺苷脱氨酶的RNA靶向的更多方法,还允许对RNA进行编辑,从而以更好的安全性23,24产生瞬时和可逆调节蛋白质表达。像DNA编辑的方法一样,具有表观遗传机制操纵的新兴技术显示出临床使用的巨大转化潜力25。包括CRISPR在内的大多数基因治疗系统都依赖于病毒载体对转基因的妄想(表1),这些媒介具有生物不兼容,基因组压力和不需要的抗tar-效果26、27的风险。鉴于这些挑战,已经探索了替代输送系统,包括使用干细胞,功能化脂质体和免疫学中性纳米载体13,28。自定义病毒capsids,并仔细选择了载体中的基因组插入位点,并操纵了Capsids的自动化机制以及合成递送系统的使用,还可以最大程度地减少当前基因治疗方法的不良反应,并增强在包括Thrance Medical Compores(包括Chrance becompies)中,包括Chrmicapies,包括Chronic 11,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29。
使用 RNA 干扰 (RNAi) 下调特定基因来调节 T 细胞功能,在推进许多免疫相关疾病(包括癌症、炎症、自身免疫和病毒感染)的靶向治疗方面具有巨大潜力。造血细胞,尤其是原代 T 淋巴细胞,通常很难用小干扰 RNA (siRNA) 转染。在此,我们描述了一种使用靶向脂质纳米颗粒 (tLNP) 将 siRNA 特异性地递送到小鼠 CD4+ T 细胞的新策略。为了提高 siRNA 递送的效率,这些 tLNP 已与几种脂质一起配制,旨在提高 siRNA 递送的稳定性和效率。tLNP 表面用抗 CD4 单克隆抗体 (mAb) 功能化,以允许将 siRNA 特异性地递送到 CD4+ T 淋巴细胞。体外,tLNP 通过仅靶向原代 CD4+ T 淋巴细胞而不靶向其他细胞类型表现出特异性。这些粒子的全身静脉内给药导致有效结合并被多个解剖部位的 CD4+ T 淋巴细胞吸收,包括脾脏、腹股沟淋巴结、血液和骨髓。tLNPs 的沉默发生在循环和静息 CD4+ T 淋巴细胞的一个子集中。有趣的是,我们表明 tLNPs 内化而不是内体逃逸是一个基本事件,它早在全身给药后一小时内就发生,决定了 tLNPs 的功效。总之,这些结果表明 tLNPs 可能为操纵 T 细胞功能开辟新途径,并可能有助于建立 RNAi 作为白细胞相关疾病的治疗方式。项目 ID:10-2016-962
图 1 心脏靶向(Gal4 Τ inC Δ 4 )蛋白酶体 Pros β 5 基因的 KD 导致蛋白质组不稳定和线粒体数量减少。 (a) Pros β 5 siRNA 后心脏组织中 Pros β 5 基因的相对表达(与对照相比)。 (b, c) Pros β 5 RNAi(与对照相比)果蝇心脏组织中相对 (%) 26S 蛋白酶体活性 (b) 和 ROS 水平 (c)。 (d) Pros β 5 KD 后果蝇心脏组织中蛋白质组泛素化 (Ub) 和羰基化 (DNP) 的免疫印迹分析。 (e) CLSM 观察用 LysoTracker 染色的 Pros β 5 RNAi(与对照相比)果蝇心管(e1)、LysoTracker 定量(e2)和使用溶酶体标记物抗 Lamp1(e3)进行免疫印迹分析。(f) 所示基因型果蝇心脏组织中蛋白酶活性的相对(%)。(g) blw/ATP5A 免疫荧光染色后,CLSM 可视化所示果蝇品系心脏组织中的线粒体;细胞核用 DAPI 复染。(h) Pros β 5 KD 后,所示基因型分离心脏组织中所示线粒体基因的相对表达水平(与对照相比)。在 (a, h) 中,基因表达与相应对照作图;使用 RpL32/rp49 基因作为 RNA 输入参考。 (d)和(e3)中的 Gapdh 和 Actin 探测分别用作蛋白质输入参考。p 值采用非配对 t 检验计算。条形图,± SD(n ≥ 3);* p < 0.05;** p < 0.01
多个Gretchen Hagen 3(GH3)基因通过其在维持激素稳态中的作用而与植物生长和发育的一系列过程有关。但是,关于GH3基因在番茄(Solanum lycopersicum)中的功能的研究有限。在这项工作中,我们研究了番茄GH3基因家族成员SLGH3.15的重要功能。SLGH3.15的过表达导致该植物的上述和地下部分的严重矮人,伴随着自由IAA含量的大幅降低,并降低了SLGH3.9的表达,SLGH3.9(SLGH3.15)的表达。IAA的外源供应对原始根的伸长产生了负面影响,并部分恢复了SLGH3.15 -ERCORTEXPRYSE线中的重力缺陷。 虽然在SLGH3.15 RNAi线中未观察到表型变化,但SLGH3.15和SLGH3.9的双基因敲除线对使用生长素极性转运抑制剂的处理敏感不太敏感。 总的来说,这些发现揭示了SLGH3.15在IAA稳态中的重要作用,并且是自由IAA积累和番茄中侧根形成的负调节剂。IAA的外源供应对原始根的伸长产生了负面影响,并部分恢复了SLGH3.15 -ERCORTEXPRYSE线中的重力缺陷。虽然在SLGH3.15 RNAi线中未观察到表型变化,但SLGH3.15和SLGH3.9的双基因敲除线对使用生长素极性转运抑制剂的处理敏感不太敏感。总的来说,这些发现揭示了SLGH3.15在IAA稳态中的重要作用,并且是自由IAA积累和番茄中侧根形成的负调节剂。
1. RNA 干扰 (RNAi),NAT'LC ENTER FOR B IOTECH.INFO.,https://www.ncbi.nlm.nih.gov/probe/docs/techrnai/(上次访问时间为 2018 年 10 月 27 日)。 2. 请参阅 Sherry Y. Wu 等人,针对无法用药的靶点:当前 RNAi 疗法的进展和障碍,SCI.TRANSLATIONAL MED.,2014 年 6 月,第 1 页,1(“[siRNA] 方法在肿瘤学领域引起了特别的兴趣,因为许多重要靶点已被证明无法用药。”)。 3.参见 Ashley J. Pratt 和 Ian J. MacRae,RNA 诱导的沉默复合物:一种多功能的基因沉默机器,284 J. B IOLOGICAL C HEMISTRY 17897, 17899 (2009)(“siRNA 引导链与靶 RNA 的互补区形成 Watson-Crick 配对的 A 型双螺旋。”);另见下文第 IA 4 节有关互补结合的讨论。参见 Chiranjib Chakraborty 等人,治疗性 miRNA 和 siRNA:作为下一代医学从实验室走向临床,8 M OLECULAR T HERAPY N UCLEIC A CIDS 132, 132 (2017); FDA 批准首创的 RNA 靶向疗法治疗罕见疾病,美国食品药品监督管理局。(2018 年 8 月 10 日),https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-targeted-rna-based-therapy-treat-rare-disease[以下简称 RNA 疗法](“迄今为止,已启动约 20 项使用 miRNA 和 siRNA 疗法的临床试验。”)。5. 例如,参见 Ass'n for Molecular Pathology v. Myriad Genetics, Inc.,569 US 576, 595(2013 年)。
1. Zverintseva Karolina Mikhailovna,学生,伊尔库茨克国立生物科学大学,俄罗斯伊尔库茨克 “玉米线粒体质粒对核基因进化的影响” K. Zverintseva、I. Gorbenko 2. Borisenko Natalya Viktorovna,研究员,俄罗斯萨拉托夫联邦国家预算科学机构“FANTS South-East” “通过 RNA 沉默 gamma-kafirin 基因提高高粱种子储存蛋白的消化率:RNAi 遗传构建体在 cv. 突变体中的遗传和表达。 “进步及其混合体” NV Borisenko、LA Elkonin、TE Pylaev、S.Kh。 Sarsenova、V. Panin 3. Korzhenevskiy Maksim Anatolyevich,初级研究员,俄罗斯科学院卡累利阿研究中心林业研究所,俄罗斯彼得罗扎沃茨克 “不同木质部发生情景下卡累利阿桦树 (Betula pendula var. carelica) 树干组织中糖转运蛋白基因的差异表达” MA Korzhenevskiy、AK Pomeranets、OV Gorshkov、Yu.L. Moshchenskaya、NA Galibina 4. Vilis Polina Sergeevna,实验室研究助理,圣彼得堡国立大学,俄罗斯圣彼得堡“在从种子到幼苗的过渡阶段,对编码 ABA 依赖性转录因子 ABI3、ABI4 和 ABI5 基因启动子在 Pisum sativum L. 胚轴中甲基化模式的分析”P.S.维利斯,E.A.克里洛娃,E.K.赫列斯特金娜,S.S.梅德韦杰夫,G.N. Smolikova 5. Frankevich Tatyana Andreevna,实验室助理,ICG SB RAS,俄罗斯新西伯利亚“研究 GAUT1 和 GAUT7 基因敲除对拟南芥悬浮培养细胞聚集的影响”T.A.内华达州弗兰卡维奇佩尔米亚科娃,Yu.V.西多尔丘克,E.V.德伊内科
摘要 :胶质母细胞瘤是一种死亡率极高的恶性脑肿瘤,目前尚无有效治疗方法,无法有效提高患者生存率。传统的基因编辑工具如锌指核酸酶、RNAi和翻译激活样效应核酸酶(TALENTS)等在治疗胶质母细胞瘤方面已显示出优势,但存在成本高、操作困难的缺点。近年来,随着CRISPR-Cas系统的发现和发展,其设计简单、价格低廉、灵活性高等特点使其逐渐成为一种广泛使用的基因编辑工具,为胶质母细胞瘤的研究提供了强劲助力。本文结合近年的文献,对CRISPR-Cas系统在胶质母细胞瘤模型建立和疗法研发中的应用进行综述。
• RNA 介导的基因表达 (RNA i , ASO) 涉及使用小 RNA 分子 (例如 siRNA、miRNA) 来沉默导致疾病的特定基因。这可用于治疗多种疾病,包括病毒感染、癌症和遗传疾病。通过阻止有害蛋白质的产生,RNAi 可以帮助防止疾病进展并改善患者的预后 • mRNA (信使 RNA) 疗法涉及使用合成的 mRNA 分子在患者体内产生治疗性蛋白质。这种方法可用于治疗遗传疾病以及癌症和传染病等疾病。合成的 mRNA 使用脂质纳米颗粒或其他递送方法递送到细胞中,旨在使靶细胞能够产生治疗性蛋白质