A.S.C.,B.M.,D.C。撰写了手稿; B.G.D.,B.M.,C.V.L.,D.C。设计了研究项目; A.S.C.,C.Y.S.,D.C。设计了VCIRCTRAPPIST; A.S.C.,M.B.,M.G.,M.G.,S.M.,C.P.,L.V。 进行了研究并处理了样品; B.G.D.,N.A.G.,B.M.,C.V.L.,D.C。提供了试剂和样品; B.G.D.,B.M.,C.V.L。 获得了资金; A.S.C.,B.M.,D.C。分析了数据; M.B.,M.G.,M.G.,S.M.,C.P.,L.V.,C.Y.S.,B.G.D.,N.A.G.,C.V.L。 审查了手稿; D.C.是该项目的领导者。A.S.C.,B.M.,D.C。撰写了手稿; B.G.D.,B.M.,C.V.L.,D.C。设计了研究项目; A.S.C.,C.Y.S.,D.C。设计了VCIRCTRAPPIST; A.S.C.,M.B.,M.G.,M.G.,S.M.,C.P.,L.V。进行了研究并处理了样品; B.G.D.,N.A.G.,B.M.,C.V.L.,D.C。提供了试剂和样品; B.G.D.,B.M.,C.V.L。获得了资金; A.S.C.,B.M.,D.C。分析了数据; M.B.,M.G.,M.G.,S.M.,C.P.,L.V.,C.Y.S.,B.G.D.,N.A.G.,C.V.L。审查了手稿; D.C.是该项目的领导者。
摘要。我们已经回顾了圆环RNA(CIRCRNA)的文献,在临床前胰腺癌中具有功效相关的体内模型。鉴定出的CIRCRNA靶化学抗性机制(n = 5),分泌的蛋白质和跨膜受体(n = 15),转录因子(n = 9),信号传导的成分 - (n = 11),泛素化 - (n = 2) - (n = 2),自噬系统(自动噬菌体)(n = 2)和其他(n = 9)。除了确定治疗性干预靶标外,CIRCRNA是治疗胰腺癌的潜在新实体。可以通过反义寡核苷酸(ASO),小型干扰RNA(siRNA),短发夹RNA(SHRNA)或定期散布的短上粒子短上粒细胞激素重复蛋白相关蛋白(CRISPR-CAS)基于基于的 - 基于基于短上的蛋白质(CRISPR-CAS) - 基于基于限制的可以抑制。 使用质粒或基于病毒的载体系统替换疗法可以重新构成下调的CIRCRNA的功能。 检查了目标验证实验和改进的相应剂输送系统的开发。 胰腺癌是癌症死亡的第三个总体原因,2022年全球每年60 000次发病率(1)。 手术后的五年生存中位数约为20%,只有15-20%的患者有资格进行诊断(2)。 目前,Abraxane,Paclitaxel-可以抑制。 使用质粒或基于病毒的载体系统替换疗法可以重新构成下调的CIRCRNA的功能。 检查了目标验证实验和改进的相应剂输送系统的开发。 胰腺癌是癌症死亡的第三个总体原因,2022年全球每年60 000次发病率(1)。 手术后的五年生存中位数约为20%,只有15-20%的患者有资格进行诊断(2)。 目前,Abraxane,Paclitaxel-。使用质粒或基于病毒的载体系统替换疗法可以重新构成下调的CIRCRNA的功能。检查了目标验证实验和改进的相应剂输送系统的开发。胰腺癌是癌症死亡的第三个总体原因,2022年全球每年60 000次发病率(1)。手术后的五年生存中位数约为20%,只有15-20%的患者有资格进行诊断(2)。目前,Abraxane,Paclitaxel-
2化学系软件化学,赫尔辛基大学赫尔辛基科学学院,赫尔辛基大学,PB55,PB55,芬兰赫尔辛基
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员接受,以纳入药理学和实验治疗学院的教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
(Cytiva)。LNP 货物是编码工程 AsCas12a 核酸酶和 gRNA 的 mRNA,重量比为 1:1。通过 RiboGreen 测定法(ThermoFisher Scientific)评估 LNP 的包封率大于 80%,多分散性指数 (PDI) <0.2,通过 Zetasizer 分析(Malvern Panalytical,型号 ZSU3205)评估平均直径大小 <105 nm。• 细胞培养处理:用指定浓度的包封 AsCas12a mRNA 的 LNP 处理细胞,并在转染后 72 小时分离 gDNA。原代人肝细胞 (PHH) 的转染包括重组人载脂蛋白 E。进行基于扩增子的下一代测序 (NGS) 以确定编辑百分比。 • 小鼠眼内体内编辑:通过前房内注射将 LNP 递送至每只 hMYOC Y437H(具有 Y437H 突变的人类肌动蛋白基因)敲入小鼠的一只眼中。注射后一周,解剖眼球,从前房分离 mRNA。采用基于转录本的 RT-ddPCR 检测来测量剩余 hMYOC mRNA 的程度。 • 小鼠肝脏内体内编辑:通过尾静脉静脉注射将 LNP 递送至 hMYOC Y437H 小鼠。注射后一周,解剖肝脏,分离 gDNA,并进行基于扩增子的 NGS 以确定编辑百分比。 • 体外结合亲和力测量:将标记的未修饰的向导与重组工程 AsCas12a 和浓度不断增加的修饰“测试”向导混合,在室温下孵育 3 小时,然后在硝酸纤维素印迹膜 (Cytiva) 和 Hybond N+ 膜 (Cytiva) 上进行双重过滤分离。在每个膜上定量荧光标记的未修饰向导,并计算结合的未修饰向导的百分比。标记的未修饰向导的结合百分比降低是由于来自修饰的“测试”向导的结合竞争。
抑制器转移RNA(SUP-TRNA)因其在治疗由胡说八道突变引起的遗传疾病方面的有希望的治疗特性而受到重新关注。传统上,通过用抑制剂序列代替天然TRNA的反密码子序列创建了SUP-TRNA。但是,由于其复杂的相互作用组,考虑到设计和工程的其他结构和功能性tRNA特征可以产生更有效的SUP-tRNA疗法。超过20年,遗传代码扩展(GCE)的领域创造了大量的知识,资源和工具,以设计SUP-TRNA。在这篇迷你审查中,我们旨在阐明如何采用现有的知识和策略来加速发现医疗治疗方案的有效和特定的SUP-TRNA。我们重点介绍方法和里程碑,并讨论这些方法如何启发tRNA药物的研究和开发。
1夏威夷大学的生物化学,解剖学和生理学系,美国HI 96822,HINOLULU,MANOA; ninapa@hawaii.edu(n.p.a.); brennany@hawaii.edu(B.Y.Y。); bradenku@hawaii.edu(B.P.K.); cknunoka@hawaii.edu(C.K.L.N。); nrubas@hawaii.edu(N.C.R.); rkwells@hawaii.edu(R.K.W.); umedal@hawaii.edu(l.u.); kritphan@hawaii.edu(K.P.); torres91@hawaii.edu(A.T。); peres@hawaii.edu(R.P。)2分子生物科学和生物工程,热带农业与人力资源学院,夏威夷大学,檀香山Manoa,Hi 96822,美国3美国3号放射学系,哈佛医学院,波士顿,波士顿,马萨诸塞州,美国马萨诸塞州02115; emi.oki@mgh.harvard.edu 4 Athinoula A. Martinos生物医学成像中心,马萨诸塞州马萨诸塞州查尔斯敦,马萨诸塞州,美国马萨诸塞州02129 *通信:amaunake@hawaii.edu;电话。: +1-808-956-9282
crispr/cas9是一种最近发现的基因组编辑技术,它改变了科学家在研究基因功能方面的视力。cas9通过引导(g)RNA控制,该引导符合裂解以修饰相应基因的DNA。前列腺癌(PC)建模的发展不仅是针对识别前列腺细胞癌的信号传导途径的新型资源的,而且还为检查治疗的治疗剂来抵消这种类型的癌症的治疗方法创造了广泛的储藏。已经开发了几乎模仿人类前列腺癌的各种培养的针对前列腺癌的体细胞大鼠模型。纳米药物可以通过特定的传说增加生物利用度和结合来被动地靶向癌细胞,从而有助于系统性降低和提高疗效。本文重点介绍了脂质体负载的纳米米医学作为前列腺罐的潜在治疗方法,并阐明了伴有前列腺癌的CRISPR/CAS9变异。PC是通过乙基雌二醇在西大鼠模型中实验诱导的4周和SC。剂量为3,2'-二甲基-4-氨基苯基雌二醇(DAE)(50mg/kg),然后通过靶向脂质体涂层化合物进行处理,然后通过脂质体涂层化合物(例如脂质体去氨甲米松(DXM)),脂质体doxoru- doxoru- bicIn(dox)和四周(dox)(dox)(dox)(dox)turmical iperic(turmic of turmical(turmic of turmeric of)对其非靶向类似物地塞米松,阿霉素和姜黄的比较研究。3,2'-二甲基-4-氨基苯基雌二醇在5个月内引起西部大鼠的前列腺癌。 据报道,包括Malat1在内的前列腺细胞癌中对几个长的非编码RNA进行了管制。3,2'-二甲基-4-氨基苯基雌二醇在5个月内引起西部大鼠的前列腺癌。据报道,包括Malat1在内的前列腺细胞癌中对几个长的非编码RNA进行了管制。与这些脂质体化合物同时补充对前列腺癌的影响;通过前列腺特异性抗原(PSA),一氧化氮(NOX)和CRISPR/CAS9基因编辑研究了肿瘤标记。 另一方面,还研究了apoptotic生物标志物局灶性激酶(AKT-1),磷脂酰氨基烷醇激酶(PI3K)和糖原合酶激酶3(GSK-3)的基因表达,并还研究了这些结果,并通过HIS-HIS-拓扑核对学检查了这些结果。 脂质体负载的地塞米松;阿霉素和姜黄可以通过调节CRISPR/CAS9基因编辑和长期非编码基因MALAT1来视为前列腺癌的有希望的治疗剂。与这些脂质体化合物同时补充对前列腺癌的影响;通过前列腺特异性抗原(PSA),一氧化氮(NOX)和CRISPR/CAS9基因编辑研究了肿瘤标记。另一方面,还研究了apoptotic生物标志物局灶性激酶(AKT-1),磷脂酰氨基烷醇激酶(PI3K)和糖原合酶激酶3(GSK-3)的基因表达,并还研究了这些结果,并通过HIS-HIS-拓扑核对学检查了这些结果。脂质体负载的地塞米松;阿霉素和姜黄可以通过调节CRISPR/CAS9基因编辑和长期非编码基因MALAT1来视为前列腺癌的有希望的治疗剂。
癌症是一种全球疾病,由于与诊断和治疗相关的大规模挑战,人们认为对人类的安全和福祉是一种持续威胁。在美国进行的一项调查确定癌症是心脏病后人类死亡率的SEC-OND领导原因(Siegel等,2019)。关于癌症生物学的数十年研究主要集中在蛋白质代码的基因的作用上。 只能宣布不经过翻译的分子家族,称为非编码RNA(NCRNA),在调节基于细胞的活动中也起着相应的作用。 自从他们的理解中,对NCRNA的理解已经大大提高了,科学家们识别出多种多样的NCRNA类,这些NCRNA既包含致癌和肿瘤替代品种。 因此,NCRNA被用作数百种癌症临床研究的新型疗法生物标志物。 本综述旨在通过探索其复杂的分子机械性并评估其对的潜在贡献,以强调NCRNA在癌症生物学中的明显贡献。关于癌症生物学的数十年研究主要集中在蛋白质代码的基因的作用上。只能宣布不经过翻译的分子家族,称为非编码RNA(NCRNA),在调节基于细胞的活动中也起着相应的作用。自从他们的理解中,对NCRNA的理解已经大大提高了,科学家们识别出多种多样的NCRNA类,这些NCRNA既包含致癌和肿瘤替代品种。因此,NCRNA被用作数百种癌症临床研究的新型疗法生物标志物。本综述旨在通过探索其复杂的分子机械性并评估其对
mRNA分子的稳定性受聚(A)尾巴长度的影响,这反过来又对治疗疗法的工作效果有影响。我们团队收集的数据表明,在不同单元格中Poly(A)尾巴处理的方式比以前想象的要大得多。新资助的欧洲研究委员会Viverna项目将使用实验和计算方法来增强用于确定mRNA特性的直接RNA测序方法的准确性。借助转基因小鼠模型,原代细胞培养和合成生物学方法,该项目将促进下一代mRNA疗法的设计。