摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
抽象 - 犯罪预测和分析在增强公共安全和优化执法工作中起着至关重要的作用。这项研究探讨了基于深度学习的方法,整合复发性神经网络(RNN),卷积神经网络(CNN)和长期短期记忆(LSTM)网络,以进行有效的犯罪预测和分析。所提出的框架利用了RNN和LSTMS的时间优势以及CNN的空间特征提取能力来分析大规模犯罪数据集。rnns和LSTMS处理时间序列数据以预测未来的犯罪趋势,而CNNS进行地理空间分析以识别各个地区的犯罪分布模式。混合模型处理结构化数据(例如,日期,时间,位置)和非结构化数据(例如犯罪描述),以提高预测精度。实验结果证明了其检测犯罪热点,预测犯罪类别并发现隐藏趋势的能力,为执法和决策者提供了可行的见解。这项研究强调了深度学习在应对复杂,动态挑战(例如犯罪预测)中的潜力,促进了更智能和更安全的城市。未来的工作可以纳入实时数据流,并评估在决策系统中部署此类模型的道德考虑
电动机皮层通过向下游神经电路发送时间模式来启动运动。运动执行过程中的模式被认为是由电机皮质网络中的内部动力学产生的。但是,外部输入(例如本体感受)也塑造了运动皮质动力学。为了调查内部动力学和本体感受反馈对自愿运动执行的贡献,我们构建了几种具有本体感受反馈的不同组合,以控制延迟到达任务中的人工手部运动。我们发现,抑制性稳定网络接收手运动学和肌肉力产生的模式与运动皮层神经元数据中观察到的模式最相似。此外,我们使用了一种破坏策略来剖析内部动力学和本体感受反馈的贡献,并发现内部动力学占主导地位,而本体感受反馈微调微型运动命令。消融实验表明,本体感受反馈改善了针对嘈杂的初始条件的鲁棒性。最后,考虑到本体感受途径中感觉反馈的延迟,噪声和来源,我们构建了一个感觉估计网络。我们的结果强调了在运动控制模型中整合内在体系结构和外部输入的必要性,从而促进了受脑启发的人工智能系统的发展。
对经济的规模和表现的见解至关重要,而实际GDP的增长率经常用作经济健康的关键指标,强调了国内生产总值(GDP)的重要性。此外,近年来,汇款引起了全球的巨大兴趣,尤其是在冈比亚。这项研究介绍了创新模型,即复发性神经网络和长期记忆(RNN-LSTM)的混合体,以基于冈比亚的汇款流入来预测GDP的增长。该模型集成了来自世界银行发展指标和冈比亚中央银行(1966-2022)的数据。Pearson的相关性用于检测和选择与GDP和汇款最牢固的变量。此外,还采用了一种参数传输学习技术来提高模型的预测精度。通过随机搜索过程对模型的超参数进行了细调,并使用RMSE,MAE,MAPE和R 2度量来评估其有效性。研究结果首先表明,它具有良好的概括能力,并且在基于汇款流入的GDP增长方面具有稳定的适用性。第二,与独立模型相比,所建议的模型超过预测准确性的最高R 2分数为91.285%。第三,预测的结果进一步表明汇款与短期经济增长之间存在牢固和积极的关系。本文通过采用人工智能(AI)技术来解决基于汇款流入的GDP的关键研究差距。
运动皮层通过向下游神经回路发送时间模式来启动运动。运动执行过程中的模式被认为是由运动皮层网络内的内部动态产生的。然而,本体感受等外部输入也会影响运动皮层动态。为了研究内部动态和本体感受反馈对自愿运动执行的贡献,我们构建了几个运动皮层模型,从虚拟手臂接收不同组合的本体感受反馈来执行延迟到达任务。考虑到延迟、噪声和感觉反馈的来源,我们构建了一个感觉估计网络。我们发现抑制稳定网络接收的手部运动学和肌肉力量产生的模式与运动皮层神经元数据中观察到的模式最相似。此外,我们使用了一种破坏策略来剖析内部动态和本体感受反馈的贡献,发现内部动态占主导地位,而本体感受反馈可以微调运动命令。对消融实验的分析表明,本体感受反馈提高了对嘈杂初始条件的鲁棒性。我们的研究结果表明,内在结构和外部输入对于产生类似大脑的神经活动都至关重要。
作为一个包容性的组织,我们致力于确保各个年龄段的学习者都能得到发展、学习新技能并取得成就,以便他们在离开 RNN 集团时能够完全具备资格成功进入劳动力市场并从事自己热爱的职业,从而在个人生活和职业生涯中都过上幸福而充实的生活。
b'摘要\xe2\x80\x94准确估计充电状态 (SOC) 对于储能应用中电池管理系统 (BMS) 的有效和相对运行至关重要。本文提出了一种结合卷积神经网络 (CNN)、门控循环单元 (GRU) 和时间卷积网络 (TCN) 的新型混合深度学习模型,该模型结合了 RNN 模型特征和电压、电流和温度等非线性特征的时间依赖性,以与 SOC 建立关系。时间依赖性和监测信号之间的复杂关系源自磷酸铁锂 (LiFePO4) 电池的 DL 方法。所提出的模型利用 CNN 的特征提取能力、GRU 的时间动态建模和 TCN 序列预测强度的长期有效记忆能力来提高 SOC 估计的准确性和鲁棒性。我们使用来自 In\xef\xac\x82ux DB 的 LiFePO4 数据进行了实验,经过处理,并以 80:20 的比例用于模型的训练和验证。此外,我们将我们的模型的性能与 LSTM、CNN-LSTM、GRU、CNN-GRU 和 CNN-GRU-LSTM 的性能进行了比较。实验结果表明,我们提出的 CNN-GRU-TCN 混合模型在 LiFePO4 电池的 SOC 估计方面优于其他模型。'
人类行动识别(HAR)涵盖了监视各个领域的人类活动的任务,包括但不限于医学,教育,娱乐,视觉监视,视频检索以及对异常活动的识别。在过去十年中,HAR领域通过利用卷积神经网络(CNN)和经常性的神经网络(RNN)来有效提取和理解复杂的信息,从而增强了HAR系统的整体性能,从而取得了实质性的进展。最近,计算机视觉的领域见证了视觉变压器(VIT)的启示作为有效的解决方案。超出图像分析的范围,已验证了变压器体系结构的功效,从而将其适用性扩展到了不同的视频相关任务上。值得注意的是,在这一景观中,研究界表现出对HAR的浓厚兴趣,承认其多种效用并在各个领域中广泛采用。本文旨在提出一项涵盖CNN的涵盖调查,鉴于它们在HAR领域的重要性,RNNS对VIT的发展。通过对现有文献进行彻底研究并探索新兴趋势,本研究对该领域的累积知识进行了批判性分析和综合。此外,它还研究了正在进行的开发混合方法的努力。遵循此方向,本文提出了一种新型的混合模型,该模型旨在整合CNN和VIT的固有优势。
钻孔热交换器(BHE)可显着提高地面源热泵(GSHP)系统中的热交换效率。准确预测BHE的出口流体温度对于优化GSHP性能,存储和资源保护至关重要。传统的机器学习方法通过手动特征提取和复杂的非线性关系面临挑战。为了克服这些,这项研究引入了长期出口流体温度预测的混合卷积神经网络(CNN)和复发性神经网络(RNN)模型。该模型使用CNN进行时间特征提取和RNN进行顺序模式学习。对LSTM,CNN和Simpleernn模型进行了评估,提出的模型实现了卓越的性能,RMSE为0.818,MAE为0.642,AARE为0.0305,R²为98.75%,证明了BHE系统效率和可持续性的显着进步。
本论文由 ARROW@TU Dublin 计算机科学学院免费开放供您阅读。该论文已被 ARROW@TU Dublin 授权管理员接受并纳入论文。如需更多信息,请联系 arrow.admin@tudublin.ie、aisling.coyne@tudublin.ie、vera.kilshaw@tudublin.ie。