人类行动识别(HAR)涵盖了监视各个领域的人类活动的任务,包括但不限于医学,教育,娱乐,视觉监视,视频检索以及对异常活动的识别。在过去十年中,HAR领域通过利用卷积神经网络(CNN)和经常性的神经网络(RNN)来有效提取和理解复杂的信息,从而增强了HAR系统的整体性能,从而取得了实质性的进展。最近,计算机视觉的领域见证了视觉变压器(VIT)的启示作为有效的解决方案。超出图像分析的范围,已验证了变压器体系结构的功效,从而将其适用性扩展到了不同的视频相关任务上。值得注意的是,在这一景观中,研究界表现出对HAR的浓厚兴趣,承认其多种效用并在各个领域中广泛采用。本文旨在提出一项涵盖CNN的涵盖调查,鉴于它们在HAR领域的重要性,RNNS对VIT的发展。通过对现有文献进行彻底研究并探索新兴趋势,本研究对该领域的累积知识进行了批判性分析和综合。此外,它还研究了正在进行的开发混合方法的努力。遵循此方向,本文提出了一种新型的混合模型,该模型旨在整合CNN和VIT的固有优势。
脑机接口 (BMI) 可以恢复瘫痪患者的运动功能,但目前受限于实时解码算法的准确性。使用现代训练技术的循环神经网络 (RNN) 在根据神经信号准确预测运动方面已显示出良好的前景,但尚未在闭环设置中与其他解码算法进行严格评估。在这里,我们将 RNN 与其他神经网络架构进行了比较,使用来自非人类灵长类动物的皮层内信号对手指运动进行实时连续解码。在一指和两指在线任务中,LSTM(一种 RNN)的表现优于卷积和基于 Transformer 的神经网络,平均吞吐量比卷积网络高 18%。在运动集减少的简化任务中,RNN 解码器被允许记住运动模式并匹配健全人的控制。随着不同运动数量的增加,性能逐渐下降,但并没有低于完全连续的解码器性能。最后,在双指任务中,其中一个自由度的输入信号较差,我们使用经过训练的 RNN 恢复了功能控制,这些 RNN 既可以充当运动分类器,也可以充当连续解码器。我们的结果表明,RNN 可以通过学习和生成准确的运动模式来实现功能性实时 BMI 控制。
脑机接口 (BMI) 可以恢复瘫痪患者的运动功能,但目前受限于实时解码算法的准确性。使用现代训练技术的循环神经网络 (RNN) 在根据神经信号准确预测运动方面已显示出良好的前景,但尚未在闭环设置中与其他解码算法进行严格评估。在这里,我们将 RNN 与其他神经网络架构进行了比较,使用来自非人类灵长类动物的皮层内信号对手指运动进行实时连续解码。在一指和两指在线任务中,LSTM(一种 RNN)的表现优于卷积和基于 Transformer 的神经网络,平均吞吐量比卷积网络高 18%。在运动集减少的简化任务中,RNN 解码器被允许记住运动模式并匹配健全人的控制。随着不同运动数量的增加,性能逐渐下降,但并没有低于完全连续的解码器性能。最后,在双指任务中,其中一个自由度的输入信号较差,我们使用经过训练的 RNN 恢复了功能控制,这些 RNN 既可以充当运动分类器,也可以充当连续解码器。我们的结果表明,RNN 可以通过学习和生成准确的运动模式来实现功能性实时 BMI 控制。
答案:C解释:复发性神经网络(RNN)是一类神经网络,节点之间的连接可以形成周期。此周期创建一个反馈循环,该循环允许网络维护内部状态或内存,该状态或内存持续到不同的时间步骤。这是RNN的关键特征,它将它们与其他神经网络区分开来,例如仅在一个方向上处理输入并且没有内部状态的前馈神经网络。rnns对于上下文或顺序信息很重要的任务特别有用,例如语言建模,时间序列预测和语音识别。保留先前输入信息的能力使RNN能够根据整个数据顺序做出更明智的预测,而不仅仅是当前输入。对比:选项A(它们并行处理数据)是不正确的,因为RNN通常会顺序处理数据,而不是并行处理。选项B(它们主要用于图像识别任务)是不正确的,因为图像识别更常见于卷积神经网络(CNN),而不是RNN。选项D(它们没有内部状态)是不正确的,因为具有内部状态是RNN的定义特征。此反馈循环是RNN的运行基础,并允许他们通过“记住”过去的输入来有效地处理数据序列以影响未来的输出。此内存功能使RNN适用于涉及顺序或时间相关数据的应用程序。
I.心血管疾病,包括影响心脏或血管的一系列疾病,通常被称为心脏病。它包括影响心血管系统的各种疾病,冠状动脉疾病是最常见的形式,导致心脏病发作。该机器学习项目的重点是使用视网膜图像分析通过经常性神经网络(RNN)检测心脏问题。视网膜特征与心血管健康之间的潜在联系引发了人们对使用视网膜成像作为诊断工具的兴趣。由于视网膜是具有类似于循环系统的血管结构的神经组织,因此视网膜血管中的异常可能表明心脏问题潜在的心脏问题。视网膜血管结构与心血管系统具有相似性,视网膜血管的微血管变化可以表明全身循环系统问题,包括与心脏有关的情况。复发性神经网络(RNN)是一种人工神经网络,旨在处理顺序数据并随着时间的推移识别模式。与传统的神经网络不同,RNN具有在网络中形成周期的连接,从而使它们可以保留以前输入的记忆。本研究旨在通过利用RNN来提高心脏病检测的准确性和效率,RNN特别擅长处理顺序数据。这项研究很重要,因为它提出了一种非侵入性且可能具有成本效益的方法来早期发现心脏病。如果成功,将视网膜图像作为诊断工具可以提供主动评估心血管健康的方法。
响应气候变化,评估极端天气条件下的作物生产力对于提高粮食安全至关重要。与物理过程保持一致的作物模拟模型,可提供解释性,但表现较差。相反,用于作物建模的机器学习(ML)模型具有强大的可扩展性,但可作为黑匣子,并且缺乏遵守作物生长的物理原理。为了弥合这一差距,我们提出了一种新颖的方法,该方法通过估计用水量和对像素水平的水稀缺性的敏感性来结合两种方法的优势。这种方法通过使用增强的损失函数依次解决对水稀缺性的作物产量反应的方程来实现基于物理原理的产量损失估计。利用Sentinel-2卫星图像,气候数据,模拟的用水数据和像素级产量数据,我们的模型表明了高准确性,达到了高达0.77的R 2,匹配或超过了诸如RNNS和变形金刚(RNNS and Transfors)的先例模型。此外,它还提供了可解释的和物理一致的产出,支持行业,决策者和农民适应极端天气条件。
循环神经网络 (RNN) 在神经 NLP 的早期阶段具有变革性(Sutskever 等人,2014 年),并且与 Transformers 等较新的架构相比仍具有竞争力(Orvieto 等人,2024 年)。如今,量子计算也正在成为一种潜在的变革性技术(Preskill,2018 年),我们很自然地会考虑 NLP 模型的量子版本,比如 RNN,并问它们是否比经典模型具有任何优势。在这里,我们开发了基于参数化量子电路 (PQC) 的单元量子 RNN。PQC 可用于提供一种混合量子经典计算形式,其中输入和输出采用经典数据的形式,而控制 PQC 计算的一组参数是经过经典优化的(Benedetti 等人,2019 年)。量子计算之所以令人兴奋,是因为它能让我们高效地解决问题或运行模型,而这些在传统计算机上无法高效运行(Nielsen and Chuang,2000)。量子硬件的快速发展意味着
计算神经科学的核心目的是将大量神经元种群的活性与潜在的动态系统联系起来。这些神经动力学的模型理想情况下应既可以解释又适合观察到的数据。低级复发性神经网络(RNN)通过具有可拖动动力学表现出这种解释性。但是,尚不清楚如何最佳地拟合低级别的RNN与由对潜在随机系统进行嘈杂观察的数据组成的数据。在这里,我们建议与随机的低级RNN一起使用各种顺序蒙特卡洛方法。我们在由连续和尖峰神经数据组成的几个数据集上验证了我们的方法,在该数据集中,我们获得的尺寸潜在动力学比当前方法的当前状态较低。此外,对于具有分段线性非线性的低级模型,我们展示了如何有效地识别单位数量中多项式而不是指数成本的所有固定点,从而分析了针对大型RNN的推断动力学分析。我们的方法都阐明了实验记录的基础动力系统,并提供了一种生成模型,其轨迹与观察到的可变性相匹配。
当将多个项目保存在短期内存中时,回顾性优先级优先级优先于另一个项目(复古示意)可以促进后续召回。然而,这种作用的神经和计算基础知之甚少。最近的一项研究记录了在复古任务期间猕猴侧向前额叶皮层(LPFC)中的神经信号,在(预先提示)和(会引发后)回归开始之前(预告症)和之后的延迟期间活动对比。他们报告说,在提示前延迟中,单个刺激被维持在神经种群活动的非独立子空间中,而在提示后延迟中,先前的项目被旋转成一个共同的子空间,有可能允许一种常见的读取机制。为了了解如何通过错误最小化可以学习此类代表性转变,我们通过监督训练了经常性的神经网络(RNN),以执行同等的提示回复任务。rnns提供了两个表示结合性颜色刺激的输入,然后进行了预示记忆延迟,位置返回和后提示延迟。我们发现,在猕猴LPFC中观察到的正交到平行的几何变换自然出现在经过训练以执行任务的RNN中。有趣的是,仅当需要在读数之前将提示信息用于几个周期的短期记忆中才能形成平行几何形状,这表明它在维护过程中可能具有鲁棒性。我们通过分析RNN的学习动态和连接模式以及用概率提示训练的模型的行为来扩展这些发现,从而使我们能够为将来的研究做出预测。总的来说,我们的发现与最新的理论说明是一致的,该账目提出的回顾将优先的内存项转化为前瞻性,面向动作的格式。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。