图像字幕(自动生成图像的描述标题的任务)由于其潜力弥合视觉和语言理解之间的差距而引起了极大的关注。随着深度学习的进步,尤其是用于序列产生的特征提取和复发神经网络(RNN)的卷积神经网络(CNN),神经图像标题发生器在产生的字幕的质量和流利程度上都取得了重大进展。本文调查了图像字幕技术的演变,从传统模型到现代深度学习方法,包括使用变压器和多峰模型。我们讨论了关键组件,例如图像表示,字幕生成和注意机制,并检查大规模数据集和评估指标的作用。尽管取得了长足的进步,但在语义理解,上下文相关性和处理偏见等领域仍存在挑战。这项调查以研究目前的研究状态并概述了该领域的潜在方向,包括探索零射击学习,多模式集成以及改善字幕模型的概括。
使用循环神经网络从神经测量重建计算动力学 Daniel Durstewitz 1,2,3,*、Georgia Koppe 1,4、Max Ingo Thurm 1 1 海德堡大学医学院中央精神卫生研究所理论神经科学系 2 海德堡大学跨学科科学计算中心 3 海德堡大学物理与天文学院 4 海德堡大学医学院中央精神卫生研究所精神病学和心理治疗诊所* 通讯作者:daniel.durstewitz@zi-mannheim.de 关键词:动力系统理论、机器学习、循环神经网络、吸引子、混沌、多个单元记录、神经生理学、神经成像 摘要 神经科学中的机械和计算模型通常采用微分或时间递归方程组的形式。此类系统的时空行为是动力系统理论 (DST) 的主题。 DST 提供了一个强大的数学工具箱,用于描述和分析从分子到行为的任何级别的神经生物学过程,几十年来一直是计算神经科学的支柱。最近,循环神经网络 (RNN) 成为一种流行的机器学习工具,用于研究神经或行为观察背后的非线性动力学。通过在与动物受试者相同的行为任务上训练 RNN 并剖析其内部工作原理,可以产生关于行为的神经计算基础的见解和假设。或者,可以直接在手头的生理和行为时间序列上训练 RNN。理想情况下,一旦训练好的 RNN 将能够生成具有与观察到的相同的时间和几何属性的数据。这称为动态系统重建,这是机器学习和非线性动力学中一个新兴的领域。通过这种更强大的方法,就其动态和计算属性而言,训练过的 RNN 成为实验探测系统的替代品。然后可以系统地分析、探测和模拟训练过的系统。在这里,我们将回顾这个令人兴奋且迅速发展的领域,包括机器学习的最新趋势,这些趋势在神经科学中可能还不太为人所知。我们还将讨论基于 RNN 的动态系统重建的重要验证测试、注意事项和要求。概念和应用将通过神经科学中的各种示例进行说明。简介理论神经科学的一个长期原则是,神经系统中的计算可以用底层的非线性系统动力学来描述和理解(Amit & Brunel,1997;Brody & Hopfield,2003;Brunel,2000;Durstewitz,2003;Durstewitz 等,1999、2000、2021;Hodgkin & Huxley,1952;Hopfield,1982;Izhikevich,2007;Machens 等,2005;Miller,2016;Rinzel & Ermentrout,1998;Wang,1999,2002;Wilson,1999;Wilson & Cowan,1972)。相关思想可以追溯到 40 年代 McCulloch & Pitts (1943)、Alan Turing (1948) 和 Norbert Wiener (1948) 的工作,并在 80 年代早期通过 John Hopfield (1982) 的开创性工作获得了发展势头,该工作将记忆模式嵌入为简单循环神经网络中的固定点吸引子。Hopfield 网络的美妙之处在于它们免费提供了生物认知系统的许多特性,例如自动模式完成、通过部分线索进行内容可寻址记忆检索或对部分病变和噪声的鲁棒性。通过动态系统理论 (DST) 的视角来观察神经计算特别有力,因为一方面,许多(如果不是大多数)物理和生物过程都是自然形式化的
1 Student, 2, 3, 4 Professors, 1,2,3,4 Department of Computer Engineering, 1, 2, 3, 4 Trinity College of Engineering and Research Pune, India Abstract: The modelling of an artificial intelligence (AI)-based enterprise callbot integrates Natural Language Processing (NLP) and Machine Learning (ML) algorithms to automate and enhance customer interactions.该系统使企业能够通过提供实时的个性化响应来有效地管理大量客户查询。CallBot使用NLP来理解和解释用户输入,从而使无缝的对话流以多种语言为单位。机器学习算法,包括受监督和无监督的模型,通过从历史互动中学习并完善其决策过程来提高机器人的响应准确性。基于AI的Callbot采用情感分析来评估呼叫者的情感语气和自适应对话管理,以指导对话实现有效决议。由ML提供支持的预测分析有助于确定客户需求,优化对医疗保健,金融和零售等各种行业的响应。通过使常规任务自动化,Callbot可以降低人类干预和运营成本,同时保持高水平的客户满意度。提出的模型着重于整合最新的NLP技术,例如变形金刚和经常性的神经网络(RNNS),以实现动态对话和上下文理解。该系统旨在随着每次交互的发展而发展,为企业通信提供高效,可扩展和以客户为中心的解决方案。索引术语 - 自然语言处理(NLP)和机器学习(ML),人工智能(AI)
a。 K-均值聚类b。分层聚类c。主成分分析(PCA)d。自动编码器3。强化学习算法增强学习(RL)的重点是通过与环境互动来做出决策的培训模型。该模型通过根据其采取的行动获得奖励或处罚来学习。a。 Q学习b。深Q-Networks(DQN)4。深度学习算法深度学习涉及具有许多层次(也称为深神经网络)的神经网络,它用于解决涉及非结构化数据(例如图像,音频和文本)的问题。a。卷积神经网络(CNN)b。复发性神经网络(RNN)和长期记忆(LSTM)网络c。生成对抗网络(GAN)d。变压器网络(BERT,GPT)5。机器学习的现实世界应用这里是ML产生重大影响的某些领域:
摘要:对美国国库债券产量的准确预测对于投资策略和经济决策至关重要。本文探讨了高级机器学习技术的应用,特别是经常性神经网络(RNN)和长期记忆(LSTM)模型,在预测这些产量中。通过整合主要的经济指标和政策变化,我们的方法旨在提高收益预测的精度。我们的研究表明,LSTM模型比传统RNN的优越性在捕获财务数据中固有的时间依赖性和复杂性方面具有优越性。包含宏观经济和策略变量可显着提高模型的预测准确性。这项研究强调了传统银行业在金融市场预测中采用人工智能(AI)的开创性运动。除了考虑驱动债券市场波动的常规经济指标外,本文还优化了LSTM,以应对在市场情绪已经定价的加息期望时处理情况。
摘要时间序列分析是各个领域的关键组成部分,例如财务,经济学,气候科学和医疗保健,在该领域中,准确的预测和模式识别至关重要。这项研究探讨了使用Google股票价格作为案例研究,探讨了复发性神经网络(RNN),尤其是长期记忆(LSTM)网络的应用,特别是短期记忆(LSTM)网络。该研究始于全面的文献综述,强调了RNN体系结构,其理论基础以及时间序列预测中的多样应用的发展和进步。从方法论上讲,本研究概述了所采用的数据预处理技术,包括将数据集缩放和将数据集划分为培训和测试集。RNN模型体系结构经过精心设计,具有多个LSTM层和辍学的正则化,以防止过度拟合并增强模型鲁棒性。使用不同的指标(MAE,MSE,RMSE)对模型进行训练和评估。经验结果证明了RNN模型在捕获时间依赖性并产生准确的股票预测方面的功效。
跨任务脑电信号分析方法研究已成为一个快速发展的研究热点。近年来,越来越多的研究者将脑电信号分析中广泛使用的特征应用到跨任务脑电信号分析研究中,包括功率谱密度(PSD)特征(Touryan et al.,2016;Adewale and Panoutsos,2019)、融合特征(Kakkos et al.,2021)等,旨在找到有效处理任务间差异的方法。同时,一些研究者通过与传统特征分类方法进行比较,探索出对不同任务之间的差异更加友好的分类器,包括多层感知器神经网络(MLPNN)(Kamrud et al.,2021)、领域自适应方法(Zhou et al.,2022)、滑动窗口支持向量机(SVM)(Boring et al.,2020)等。另一方面,为了缩小任务间的差异,提出了一些基于深度学习模型的新型跨任务模型,如卷积神经网络(CNN)(Mota et al.,2021)、循环神经网络(RNN)(Gupta et al.,2021)、基于度量的方法(Jia et al.,2023)、CNN 与 RNN 的组合(Zhang et al.,2019;Zhou et al., 2019;Taori等,2022)等。但跨任务脑电信号分析方法领域仍有许多未探索的领域,例如:任务分割与复杂度设计(Kamrud等,2021)、多源域自适应应用(Zhou等,2022)、多尺度多方向滤波器研究(Taori等,2022)、同时考虑特征提取和特征分类、增加数据量等。另外,跨任务分析与比较常见的跨学科研究也存在一些相互联系。本研究将从特征提取和特征分类的角度对跨任务脑电信号分析相关的文献进行综述,并讨论跨任务研究与跨学科研究对于脑电信号分析的关系,最后提出我们原创的观点,以期为跨任务脑电信号分析研究领域提供有益的建议。
文本对图像和图像到文本翻译是在自然语言处理(NLP)和计算机视觉的交集中迅速发展的域。文本对图像生成涉及基于描述性文本输入的图像的综合。此过程利用高级机器学习模型,例如生成对抗网络(GAN)和扩散模型,创建与提供文本相匹配的连贯性和上下文相关的视觉效果。这些模型学习了文本描述和视觉特征之间的复杂关系,从而可以生产从现实的照片到艺术渲染的各种图像。相反,图像到文本翻译的重点是从视觉输入中生成文本描述。此任务利用卷积神经网络(CNN)与复发性神经网络(RNN)或变形金刚结合进行分析和解释图像的技术。目标是提取相关信息,捕获诸如对象,动作和上下文之类的细节,并将其转换为自然语言描述。这两个过程都在各个领域都有重要的应用程序,包括创建内容,视障人士的可访问性以及增强技术中的用户互动。
机器学习是一种从已知的数据集[4]中提取数据的过程。这种学习可以是监督学习(其中机器学习模型在已知的数据输入和输出上进行训练)或无监督学习(其中在没有任何预定义信息的情况下从输入数据中提取隐藏模式)。深度学习 (DL) 是机器学习的一个子集,包含一组具有多个数据处理层的数学模型[5]。其操作非常复杂,可以通过在多个抽象层次上表示极大数据集来做出决策和处理它们[4]。人工神经网络 (ANN) 是一种模拟生物系统的 DL 算法。它由三层组成:输入层(接收输入信号)、多个隐藏层和输出层[6]。深度 ANN 具有大量隐藏层,因此准确度很高[7]。其他 DL 网络架构是根据特定应用或学习数据开发出来的。例如,卷积神经网络 (CNN) 通常用于 DL 中的图像处理,包括使用医学图像进行自动分割和计算机辅助诊断[8]。循环神经网络(RNN)是另一种适合处理时间相关信息的网络架构,例如语音处理或视频分析[9]。
摘要 — 准确预测元件的剩余使用寿命 (RUL) 是电子电路中的主要关注点。基于 RUL 的健康诊断在确定设备故障时间方面发挥着重要作用,可作为工业应用中的预警。本文提出了一种基于长短期记忆 (LSTM) 的回归模型,利用设备最基本的提取电气特征来预测环形振荡器 (RO) 电路的 RUL。LSTM 网络能够捕获时间序列数据中的时间依赖性并消除传统循环神经网络 (RNN) 中遇到的梯度消失问题。从 Cadence 模拟中,利用 22 nm CMOS 技术库,已经证明 RO 频率退化主要取决于三个主要因素,包括工作温度、电压以及最重要的设备老化参数。结果表明,13 和 21 阶段的 RUL 预测结果中超过 90% 的案例受电源电压变化限制,变化范围为 0.7 V 至 0.9 V,预测偏差最小为 2 天至 6 天。关键词:老化、剩余使用寿命、机器学习、在线预测、可靠性
