摘要:DEAD-box ATPase 是 RNA 生物学各个方面必不可少的普遍存在的酶。然而,这些酶有限的体外催化活性与它们复杂的细胞作用不一致,最显著的是它们在核糖核蛋白 (RNP) 组装过程中驱动大规模 RNA 重塑步骤。我们描述了 60S 核糖体生物合成中间体的低温电子显微镜结构,揭示了 DEAD-box ATPase Spb4 的上下文特异性 RNA 解旋如何导致 rRNA 二级结构的广泛、序列定向重塑。多个顺式和反式相互作用稳定了催化后高能中间体,从而驱动 rRNA 结构域 IV 内根螺旋结构的组织。该机制解释了如何利用 DEAD-box ATPase 有限的链分离来提供非平衡方向性并确保高效准确的 RNP 组装。
“在 LO 表中新增的列中,几个 LO 被归类为‘基础知识 (BK)’” “这些 LO 将不再是专门考试题目的主题” “但是,学生飞行员仍然需要吸收 BK LO 所需的特定知识”
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 11 月 15 日发布。;https://doi.org/10.1101/2023.11.15.566339 doi:bioRxiv preprint
这里介绍的方法是由一位使用过 Alt-R CRISPR-Cas9 系统的客户提供的。这可以作为在类似模型生物中使用 Alt-R CRISPR-Cas9 系统的起点,但可能并未针对您的基因或应用进行完全优化。IDT 不保证这些方法,IDT 的应用专家只能提供一般指导以及有限的故障排除和支持。
基因改造可转化为永久性的治疗效果,并有可能治愈某些疾病。对于癌症治疗,目前临床试验中的主要应用是体外改造免疫细胞用于过继细胞疗法。[2] 这些方法基于免疫检查点阻断 (ICB),其可抵消对免疫反应的抑制并逆转肿瘤引起的免疫抑制。[3] 基于类似的策略,针对免疫检查点分子的单克隆抗体 (mAb) 已经是临床上成熟的 ICB 药物 [4],并且多种治疗方法,例如抗细胞毒性 T 淋巴细胞相关抗原 4 (CTLA-4)、[5] 抗程序性细胞死亡-1 (PD-1) [6] 和抗程序性细胞死亡配体-1 (PD-L1) 抑制剂 [7] 已获得当局批准。由于该领域的巨大成功和动态性质,可以预计将出现基于替代靶点或阻断机制的新型癌症免疫疗法。具有免疫球蛋白 (Ig) 和免疫受体酪氨酸抑制基序结构域 (TIGIT)/脊髓灰质炎病毒受体 (PVR) 的 T 细胞免疫受体是一个新发现的检查点轴,已成为一个有前途的免疫靶点。[8] 已发现阻断 TIGIT/PVR 轴可逆转 T 细胞耗竭并增强多种类型癌症的抗肿瘤功效,包括乳腺癌 [9] 肝细胞癌 [10] 头颈部鳞状细胞癌 [11] 结直肠癌 [12] 和黑色素瘤。[13] 此外,PVR 已被确定为
电穿孔后 72 小时,可使用 BioLegend APC 抗人 TCR α / β 抗体通过流式细胞术评估用靶向 Edit-R sgRNA RNP 的 TRAC 或 TRBC 编辑的原代 CD4 + T 细胞的 TCR α / β 敲除情况。除了通过流式细胞术读取表型外,在基于 RNP 的编辑后 48-72 小时内,可以通过 T7EI/TIDE 测量插入/缺失形成。使用表 1 中列出的每个经过验证的 sgRNA 的引物,遵循 Dharmacon™ Edit-R™ 合成 gRNA 阳性对照试剂盒方案中的直接细胞裂解和 PCR 条件。要测量 T7EI 内切酶的插入/缺失形成,请完成上面列出的方案并使用分析软件。要通过分解 (TIDE) 分析跟踪插入/缺失来测量插入/缺失形成,请将得到的 PCR 扩增子发送至 Sanger 测序并使用网络工具,例如 http://shinyapps.datacurators.nl/tide/ 。以下方案描述了用于通过流式细胞术评估原代 CD4 + T 细胞中 TCR α / β 表型敲除的染色条件。1. 通过离心(300-5 分钟)沉淀用 PPIB、NTC2、TRAC 或 TRBC 靶向 RNP 电穿孔的 CD4 + T 细胞
•我们在这里描述了一个离子 - 交换色谱分析方法的发展和拟合用途的资格,以帮助表征RNP络合•无复合蛋白的数量达到了不同的高原,单域与Dimeric apoer apoer apo-grnas在GRNA上:CAS率≥1•理解这些非元件的核对范围的关系,是键入的核对范围的关系,是纽约的核对范围的关系。化合物作为治疗学
摘要:CRISPR-Cas9 系统是一种新兴的治疗工具,具有纠正多种遗传疾病的潜力。然而,对于基因治疗应用,需要一种有效的运载工具,能够将 CRISPR-Cas9 成分运送到目标细胞群的细胞溶胶中。在本研究中,我们优化了脂质纳米颗粒 (LNP) 的配方条件,以运送现成的 CRISPR-Cas9 核糖核酸蛋白 (RNP)。复合过程中的缓冲液组成和相对 DOTAP 浓度因 LNP 封装内部生产的 Cas9 RNP 或 Cas9 RNP 与用于基因校正的额外模板 DNA 而不同。通过不对称流场流分馏 (AF4) 对 LNP 的尺寸、表面电荷和等离子体相互作用进行了表征。在荧光报告细胞系上对粒子进行了功能筛选,以进行基因敲除和基因校正。这揭示了 RNP 与柠檬酸盐缓冲液和 PBS 的不相容性。我们证明了用于基因敲除的 LNP 不一定需要 DOTAP,而用于基因校正的 LNP 仅在低浓度的 DOTAP 下才有效。AF4 研究还表明 LNP 与血浆相互作用,但保持稳定,而 HDR 模板似乎有利于 LNP 的稳定性。在最佳配方条件下,我们在纳摩尔浓度的 CRISPR-Cas9 RNP 下分别实现了高达 80% 和 20% 的基因敲除和基因校正效率。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已成为修改多种细胞类型基因表达的重要工具,在肿瘤治疗中显示出前所未有的潜力 (2)。许多研究已将 CRISPR/Cas9 应用于治疗相关的体外和体内实验 (3)。然而,由于 Cas9 蛋白的尺寸较大 (160 kDa),CRISPR/Cas9 的应用受到限制。迫切需要高效、安全地将 CRISPR/Cas9 递送到 AML 细胞中以探索新的治疗靶点。近年来,CRISPR/Cas9 核糖核蛋白 (RNP) 复合物已通过电穿孔直接递送到肿瘤细胞中,由于 RNP 复合物的寿命短,脱靶效应减少 (4-9)。
图 1 甜瓜植物体内 RNP 介导的基因组编辑。(a) 微粒介导的 GFP 基因转移到甜瓜 SAM。(b) 甜瓜基因组编辑 iPB-RNP 方法概述。(c) 携带目标 CmGAD1 基因座突变的阳性 E 0 植物的 CAPS 分析。符号“–”和“+”分别表示不使用和使用 Cas9 RNP 的消化。黑色和白色三角形分别表示 Cas9 RNP 处理后的未消化和消化条带。(d) 阳性 E 0 植物的 CRISPR/Cas9 靶序列与野生型的 CRISPR/Cas9 靶序列的比对,插入和缺失用红色字母突出显示。(e) 对来自两个 E 0 植物(#2-13 和 #2-16)的 E 1 植物进行基因特异性 CAPS 分析,使用与 (c) 中相同的符号。(f) 具有 gRNA 设计的 CmACO1 基因示意图。 (g) 针对 CmACO1 的基因组编辑实验总结。(h) cmaco1 纯合突变系 (#3-2,E 2 代) 的基因特异性 CAPS 分析,使用与 (c) 一致的符号。(i) 野生型和 cmaco1 中 CmACO1 的氨基酸序列比较,CRISPR/Cas9 的靶位点用下划线表示,序列变化用红色字母表示。星号表示终止密码子。(j 和 k) 收获后野生型和 cmaco1 果实的外观 (j) 和纵切面 (k)。(l) 授粉 40 天后测量的野生型和 cmaco1 果实 (E 2 代中的个体植物 E2-1 和 E2-2) 的乙烯产生量。数据以平均值±SE (n=3) 表示。