•我们在这里描述了一个离子 - 交换色谱分析方法的发展和拟合用途的资格,以帮助表征RNP络合•无复合蛋白的数量达到了不同的高原,单域与Dimeric apoer apoer apo-grnas在GRNA上:CAS率≥1•理解这些非元件的核对范围的关系,是键入的核对范围的关系,是纽约的核对范围的关系。化合物作为治疗学
使用 RNA 和 RNP • 建议戴上手套并使用无核酸酶的试管和试剂,以避免 RNase 污染。 • 始终保持无菌技术,并使用无菌过滤移液器吸头。 • 所有 Synthego 和 Nucleofector™ 试剂均应根据制造商的建议储存。 • 合成的 sgRNA 应溶解在 TE 缓冲液中,并使用无核酸酶的水稀释至工作浓度。请参阅 Synthego 快速入门指南,了解溶解和储存合成 sgRNA 的最佳实践。 • RNP 可直接在 Nucleofector™ 溶液中形成。 • RNP 复合物在室温下可稳定保存长达 1 小时(可在 4°C 下保存长达一周,或在 -20°C 下保存长达 1 个月)。请注意,在 4°C 下储存的 RNP 长时间后可能会受到微生物生长的污染。
。CC-BY-ND 4.0 国际许可,可在未经同行评审认证的情况下使用)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 4 月 13 日发布。;https://doi.org/10.1101/2023.04.13.536294 doi:bioRxiv 预印本
• 建议戴上手套并使用无核酸酶试管和试剂以避免 RNase 污染。 • 始终保持无菌技术,并使用无菌过滤移液器吸头。 • 所有 EditCo 试剂应根据制造商的建议储存。 • 合成 sgRNA 应溶解在 TE 缓冲液中,并使用无核酸酶水稀释至工作浓度。请参阅 EditCo.com/resources 以查找与溶解和储存合成 sgRNA 相关的最佳实践。 • RNP 可直接在 Nucleofector™ 溶液中形成。 • RNP 复合物在室温下可稳定保存长达 1 小时(可在 4°C 下保存长达一周,或在 -20°C 下保存长达 1 个月)。请注意,在 4°C 下储存的 RNP 可能会在长时间后受到微生物生长的污染。
该方案描述了如何将核糖核蛋白(RNP)复合物组成,这些复合物由纯化的CAS9核酸酶复制,用化学改良的合成单导剂RNA(SGRNA)复制到永生的粘附或悬浮液中。包括一个敲门选项。RNP递送是使用Thermo Fisher Neon™转染系统完成的。包括各种细胞类型的电穿孔设置的参考。化学修饰的SGRNA旨在抵抗可导致细胞死亡的外核酸和先天的细胞内免疫级联反应。Editco化学修改的合成SGRNA具有特殊的纯度,并且始终驱动高编辑频率。
功能测定通常使用阵列式 CRISPR 筛选进行,以关联每种基因扰动对细胞功能、形态或生理学方面的影响。优化所选测定至关重要,以确保其能够可靠地识别感兴趣的表型。这可以使用测定特异性阳性和阴性对照来完成(参见第 5 页的建议对照表)。此外,优化 CRISPR 编辑和测定之间的时间也很重要,以确保可以测量清晰的表型信号。测定特异性阳性对照可用于此目的。
本方案描述了如何将由纯化的 Cas9 核酸酶与化学修饰的合成单向导 RNA (sgRNA) 组成的核糖核蛋白 (RNP) 复合物递送至标准永生化细胞系(粘附或悬浮)。尽管针对 HEK293(人胚胎肾 293 细胞)进行了优化,但本方案可能适用于许多其他细胞系(例如 A549、U2OS、HeLa、CHO、MCF-7)。RNP 递送是使用 Lipofectamine™ CRISPRMAX™ 转染试剂完成的。化学修饰的 sgRNA 旨在抵抗核酸外切酶的降解并防止可能导致细胞死亡的先天性细胞内免疫级联。本方案可用于转染 EditCo 的多向导基因敲除试剂盒。
我们在此报告了首次证明穿梭肽在恒河猴模型中将蛋白质和 ABE8e-Cas9 RNP 递送至呼吸道上皮的转化潜力。在单次气雾剂给药后,我们成功地将荧光标记的蛋白质货物递送至大气道和小气道的上皮细胞以及一些肺泡上皮。使用 S315 穿梭肽进行 ABE8e-Cas9 RNP 递送,我们在使用支气管刷回收的细胞中实现了 CCR5 基因座的显著 A 到 G 编辑。从气管和近端气道收获的上皮中 CCR5 位点的编辑效率达到 5.3%。在具有 R553X 突变的人类 CF 气道上皮中应用这种递送方法实现了类似的编辑水平并赋予 CFTR 功能的部分恢复。
核糖核蛋白 (RNP) 复合物介导的碱基编辑与质粒或病毒载体介导的基因编辑相比,由于其脱靶效应减少,预计会带来极大益处,尤其是在治疗应用中。然而,在细菌系统中生产产量充足、纯度高的重组胞嘧啶碱基编辑器 (CBE) 或腺嘌呤碱基编辑器 (ABE) 具有挑战性。在这里,我们从人类细胞表达系统中获得了高度纯化的 CBE/ABE 蛋白,并表明与质粒编码的 CBE/ABE 相比,CBE/ABE RNP 表现出不同的编辑模式(即多个碱基到单个碱基的转化率更低),这主要是因为 RNP 在细胞中的寿命有限。此外,我们发现与质粒编码的 ABE 相比,ABE RNP 在 DNA 和 RNA 中的脱靶效应都大大降低。我们最终将 NG PAM 靶向 ABE RNPs 应用于视网膜变性 12 (rd12) 模型小鼠的体内基因校正。
核糖核蛋白(RNP)复合物介导的碱基编辑预计将非常有益,因为与质粒或病毒载体介导的基因编辑相比,其具有脱靶效应,尤其是在治疗应用中。但是,在细菌系统中产生丰富的产量和高纯度的重组胞嘧啶基础编辑器(CBE)或腺嘌呤碱基编辑器(ABES)的生产具有挑战性。在这里,我们从人类细胞表达系统中获得了高度纯化的CBE/ABE蛋白,并且表明CBE/ABE RNP表现出不同的编辑模式(即,与质粒编码的CBE/ABE相比,CBE/ABE的转化率较小(即,多个碱基与单个碱基的转化率较小),主要是导致细胞中RNP的寿命有限的原因。此外,我们发现与质粒编码的ABE相比,ABE RNP的DNA和RNA的脱靶效应大大降低。我们最终将NG PAM – tarbetable -abe RNP应用于视网膜变性12(RD12)模型小鼠中的体内基因校正。