将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
CRISPR-Cas 系统为研究人员提供了真核基因组编辑工具和治疗平台,可以靶向体细胞器官中的疾病突变。大多数此类工具采用 II 型(例如 Cas9)或 V 型(例如 Cas12a)CRISPR 酶在基因组中造成 RNA 引导的精确双链断裂。然而,此类技术在进行有针对性的大片段缺失方面能力有限。最近,在微生物中普遍存在并表现出独特酶特征的 I 型 CRISPR 系统已被用于有效地在人类细胞中造成大片段染色体缺失。I 型 CRISPR 首先使用一种称为 Cascade 的多亚基核糖核蛋白 (RNP) 复合物来找到其引导互补的靶位,然后招募解旋酶核酸酶 Cas3 沿着目标 DNA 行进并以高持续性进行长距离撕裂。当以纯化的 RNP 形式引入人体细胞时,CRISPR-Cas3 复合物可有效诱导 CRISPR 靶位点上不同长度(1-100 kb)的大型基因组缺失。由于这种独特的编辑结果,CRISPR-Cas3 在诸如去除整合的病毒基因组和研究影响基因功能和人类疾病的结构变异等任务中具有巨大前景。在这里,我们提供了使用 CRISPR-Cas3 引入大型缺失的详细方案。我们描述了从 Thermobifida fusca 中纯化 IE 型 CRISPR 蛋白 Cascade 和 Cas3、将 RNP 电穿孔到人体细胞中以及使用 PCR 和测序表征 DNA 缺失的分步程序。我们在此重点关注人类多能干细胞,因为它们具有临床潜力,但这些方案将广泛应用于其他细胞系和模型生物,包括大型基因组缺失、全基因或染色体去除、以及非编码元素的 CRISPR 筛选等。© 2022 Wiley Periodicals LLC。
图 1. 多引导 sgRNA 可实现高敲除效率。为三个基因( ALPK3 、 JAK1 、 NUAK2 )设计了三个单引导 RNA,并分别引入(sgRNA1、sgRNA2、sgRNA3)和一起引入(多引导)。平均而言,多引导 sgRNA 的表现分别比 ALPK3 、 JAK1 和 NUAK2 的单个引导 RNA 好 50.8%、32.1% 和 48.2%。通过核转染将核糖核蛋白 (RNP) 转染到 HEK293 细胞(针对 ALPK3 )和 MCF7 细胞(针对 JAK1 和 NUAK2 )。对每个靶标周围的区域进行 PCR 扩增、桑格测序,并使用 CRISPR 编辑推断 (ICE) 分析进行分析。敲除 (KO) 分数是指导致推定敲除(移码诱导插入/缺失和 21+ bp 片段缺失)的序列百分比。
摘要:慢性肉芽肿病 (CGD) 是一种遗传性免疫缺陷病,主要由 X 连锁 CYBB 基因突变引起,该突变会破坏吞噬细胞和微生物防御中的活性氧 (ROS) 产生。使用造血干细胞和祖细胞 (HSPC) 中的 CRISPR/Cas9 系统进行基因修复是一种很有前途的 CGD 治疗技术。为了支持建立有效且安全的 CGD 基因疗法,我们生成了一种携带患者来源的 CYBB 基因突变的小鼠模型。我们的 CybbC517del 小鼠系显示出 CGD 的特征,并为 Cybb 缺陷的 HSPC 提供了来源,可用于评估体外和体内的基因治疗方法。在 HSPC 中使用 Cas9 RNPs 和 AAV 修复载体的设置中,我们表明 19% 的治疗细胞中的突变可以得到修复,并且治疗可以恢复巨噬细胞的 ROS 产生。总之,我们的 CybbC517del 小鼠系为改进和评估新型基因疗法以及研究 X-CGD 病理生理学提供了一个新的平台。
euglena gracilis是一种单细胞的光养生者,是一种有前途的食物,饲料和生物燃料的材料。但是,该物种中有针对性的诱变方法的发展一直是长期的挑战。在当前的遗传操纵技术中,通过RNP的直接递送进行基因组编辑具有各种优势,包括时间效率,低细胞毒性,高效率和降低距离效应(Jeon等,2017)。在我们的方法,插入和/或缺失(INDEL)突变率为77.7%–90.1%的突变率中,通过在Eggsl2基因中的两个不同靶序列中进行了扩增子测序(Nomura等,2019)。因此,我们在大肠杆菌中开发的基于RNP的基因组编辑开辟了新的途径以揭示基因的功能。
菊苣根 ( Cichorium intybus L. var. sativum ) 用于提取菊粉,菊粉是一种用作天然甜味剂和益生元的果糖聚合物。然而,在菊粉提取过程中需要去除味道苦涩的倍半萜内酯,而菊苣正是因为这种内酯才具有其独特的风味。为了避免这种提取过程及其相关成本,最近通过灭活四个拷贝的 germacrene A 合酶基因 ( CiGAS-S1、-S2、-S3、-L ),创建了倍半萜内酯含量较低的菊苣变种,该基因编码的酶可启动菊苣中苦味倍半萜内酯的生物合成。在本研究中,对 CRISPR/Cas9 试剂的不同递送方法进行了比较,比较了它们在 CiGAS 基因中诱导突变的效率、脱靶突变的频率以及它们对环境和经济的影响。 CRISPR/Cas9 试剂通过农杆菌介导的稳定转化或使用相同 sgRNA 的质粒或预组装核糖核酸复合物 (RNP) 瞬时递送。所有使用的方法都会导致 CiGAS -S1 和 CiGAS -S2 基因中出现大量 INDEL 突变,这些基因与所用的 sgRNA 完全匹配;此外,与 sgRNA 有一个错配的 CiGAS -S3 和 CiGAS -L 基因也发生了突变,但突变效率较低。虽然使用 RNP 和质粒递送会导致双等位基因、杂合或纯合突变,但质粒递送会导致 30% 的质粒片段在基因组中不必要地整合。通过农杆菌转化的植物通常表现出嵌合现象和 CiGAS 基因型的混合。当植物生长较长时间时,这种基因镶嵌变得更加多样化。虽然瞬时和稳定递送方法中靶基因型各不相同,但在六种已识别的潜在脱靶中未发现脱靶活性,这些脱靶存在两到四个错配。这些方法对环境的影响(温室气体 (GHG) 排放和一次能源需求)在很大程度上取决于它们各自的电力需求。从经济角度来看 - 就像大多数研究和开发一样
摘要基因治疗是通过破坏与疾病相关基因的表达或替换或纠正受影响细胞类型中突变的基因座的表达来治疗遗传性疾病,癌症或传染病。除了常规的基因转移方案外,设计器核酸酶(例如锌指核酸酶,故事核酸酶,巨核酸酶或CRISPR-CAS核酸酶)在该领域中越来越重要。使用设计师的核酸内切酶的使用使研究人员可以通过促进DNA双链断裂来校正有害突变。CRISPR-CAS技术被广泛用作强大的基因组编辑工具,因为它的简单性质由单个RNA分子引导到目标位点的核酸酶组成。尽管如此,主要问题之一是CRISPR-CAS系统的脱靶活动,该活动与特定的CRISPR-CAS核糖核蛋白(RNP)络合物针对基因组中其他序列的相似性有关。先前的研究表明,除了序列同源性外,靶向活性与细胞中的RNP浓度和基因组暴露于这些RNP的时间正相关。到目前为止,还没有执行很多测定,这些测定详细介绍了影响开目标和脱靶裂解动力学的参数。在我的主论文项目中,我开发了新颖的体外方法,以评估各种参数对靶向和脱靶裂解动力学和切割效率的影响。我的结果表明,CRISPR-CAS DNA裂解动力学在很大程度上取决于RNP,DNA靶位点和RNP脱靶结合位点的浓度。i发现,靶向裂解动力学和效率取决于(i)目标序列本身,(ii)RNPS和靶位点之间的比率,(iii)RNP的浓度,(iv),(iv)非目标裂解位点的浓度以及(v)(v)(v)off target结合位点的浓度。数据表明,单元格中的切割效率不仅取决于目标位点组成本身,而且还取决于脱靶裂解位点的数量,更重要的是 - 更重要的是 - 非目标结合位点的数量。
摘要:DEAD-box ATPase 是 RNA 生物学各个方面必不可少的普遍存在的酶。然而,这些酶有限的体外催化活性与它们复杂的细胞作用不一致,最显著的是它们在核糖核蛋白 (RNP) 组装过程中驱动大规模 RNA 重塑步骤。我们描述了 60S 核糖体生物合成中间体的低温电子显微镜结构,揭示了 DEAD-box ATPase Spb4 的上下文特异性 RNA 解旋如何导致 rRNA 二级结构的广泛、序列定向重塑。多个顺式和反式相互作用稳定了催化后高能中间体,从而驱动 rRNA 结构域 IV 内根螺旋结构的组织。该机制解释了如何利用 DEAD-box ATPase 有限的链分离来提供非平衡方向性并确保高效准确的 RNP 组装。
与传统转化方式相比,包含预组装的Cas9蛋白和sgRNA的RNP复合物已在动物、植物、人类细胞和微藻等各种宿主中实现了高效的基因组编辑(DiNapoli等,2020;Xing等,2014;Kim等,2014;Liang等,2019)。由于不需要密码子优化或特定启动子,RNP递送可方便、快速地应用于不同物种。此外,由于Cas蛋白在细胞内被内源性蛋白酶降解,RNP可以减少脱靶效应和嵌合现象,对细胞的细胞毒性较小(Nomura等,2019)。同时,由于不存在外来DNA序列,基因编辑的动植物可以免受转基因监管(Kanchiswamy等,2015)。因此,
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。