P ROFESSIONAL E XPERIENCE Bank of Canada Ottawa, Ontario Research Assistant – Monetary Policy & Financial Studies Jun 2023 – Jun 2024 − Used Python to engineer data pipelines for processing financial data lakes with 100B+ quotes from TMX, CME, Refinitiv, TickData − Managed the use of financial data lakes, creating custom scripts for 3 departments to assist in research and policy recommendations −与一个由15人组成的团队合作,为理事会创建了基于案件的演讲,导致了25bps的中立利率
表 3.22:所有行业主要合同利用情况:专业服务和货物和服务合同价值 40,000 美元及以下,建筑合同价值 65,000 美元及以下............................................................................................................. 3-25
阿拉巴马职业规划系统提供教育和职业规划及资源,帮助您建立成功的未来。无论您是在研究高等教育或培训信息、探索职业选择,还是创建专业的求职材料组合,该系统都可以为您提供所需的工具。
n ame martens f irlennation n ationality Belgian p Rofsencional地址TechnologiePark-Zwijnaarde 75 B-9052 B-9052 BENT BELGIUM电子邮件:Lennart.martens@ugent.be be belimburgs concectimit-limburgs concectimit- cantrand bellgs concectimit- candectim ter-- 比利时根特大学2000年7月的执照生物技术(科学硕士)。- 科学博士学位(博士学位):2006年6月15日生物技术,比利时根特大学。t iTle“通过MALDI-PSD质谱法鉴定蛋白质的新算法的开发”。D. t hesis“新型生物信息学工具有助于靶向肽中心的蛋白质组学和全球蛋白质组学数据传播” P ROFESSIONTION TAILLES Sun认证的Java 2平台(得分为93%)。P RESED TIVENTS
p在与c mmittee cmmittee f inance anct in ancant in ancant in anct in anct inantors r e evilla r e evilla j r。,z elar(c c) Egarda,M Arcos,G Atchalian,V Illanueva,E Jercito,H Ontiveros,V Illar(M。
profersional m remberships and S ervice成员,IEEE医学与生物学协会的成员,2014年至今成员,IEEE机器人和自动化协会2016年度trimation trimation and-trement trimics and Automation and Automation and Automation Letters,机器人和自动化信函 on Neural Systems and Rehabilitation Engineering 2017-present Ad-hoc Reviewer, BMJ Open 2021-present Ad-hoc Reviewer, Mechanism and Machine Theory 2020-present Ad-hoc Reviewer, Royal Society Open Science 2021-present Ad-hoc Reviewer, Journal of Biomechanics 2021-present Ad-hoc Reviewer, PLOS One 2021-present Ad-hoc Reviewer, Science Robotics 2023-Present临时审阅者,IEEE人机系统的交易2021-至今导师,Niles West High School STEM STEM指导计划2016共同老师,Solidworks研究生工作坊2015-2017的Soldworks研讨会2015-2017 igationer 2014-
P ROFESSIONAL E XPERIENCES M EDICAL U NIVERSITY OF V IENNA Vienna, Austria Bioinformatician and Data Scientist Since 10/2023 U NIVERSITY OF G RAZ Graz, Austria Postdoctoral Scientist (part-time) 09/2022 – 12/2023 U NIVERSITY C OLLEGE FOR T EACHER E DUCATION C ARINTHIA & Klagenfurt & Graz, Austria U NIVERSITY OF G RAZ 09/2014 – 09/2023 Lecturer S CIENCE I MPULS Seeboden, Austria Business Owner, Science Communicator 07/2009 – 09/2024 C ARINTHIA U NIVERSITY OF A PPLIED S CIENCES Villach, Austria Part-time Lecturer 03/2010 – 07/2017 M ERCK KG A A & C O .w erk s pittal spittal/drau,奥地利质量保证08/2011 - 09/2012 c ancer c ancer c ancer c ancer r esearch uk l ondon l ondon l ondon r esearch i nstitute n stitute n stitute n stitute london,UK PHD学生07/2005 - 06/2009
2.1 人工智能 ................................................................................................................................ 8 2.2 公平性 .......................................................................................................................................... 9 2.3 人工智能融入教育的背景 ................................................................................................ 10 2000 年代见证了数据驱动教育兴起的时代。 ................................ 11 2010 年代,机器学习时代 ...................................................................................................................... 11 2.4 人工智能工具在教育领域的优势 ........................................................................................................ 11 个性化学习 ........................................................................................................................................ 12 增强学生参与度 ................................................................................................................................ 12 增强多样化学习 ...................................................................................................................................... 12 数据驱动的洞察和干预 ...................................................................................................................... 12 管理任务的自动化 ................................................................................................................................ 13 提高可访问性 ...................................................................................................................................... 13 终身学习和职业发展 ...................................................................................................................... 13 2.5 人工智能的挑战教育技术 ................................................................................................................ 13 学生数据的安全和隐私 ................................................................................................................ 14 偏见和歧视 ................................................................................................................................ 14 对师生关系的影响 ........................................................................................................................ 14 道德考虑和公平性 ........................................................................................................................ 15