使用秀丽隐杆线虫作为衰老研究的模型生物对于我们了解该过程中涉及的基因和通路至关重要。几种响应胰岛素信号、饮食和蛋白质稳态攻击的保存良好的信号通路在控制寿命方面发挥着明确的作用。新的证据表明微小 RNA (miRNA) 在调节这些通路方面发挥着重要作用。在某些情况下,关键的衰老相关基因已被确定为特定 miRNA 的直接靶标。然而,其他 miRNA 及其蛋白质辅因子在促进或拮抗长寿方面的确切功能仍需确定。在这里,我们重点介绍了最近发现的 miRNA 在常见衰老通路中的作用,以及正在研究的用于在衰老秀丽隐杆线虫中发现 miRNA 功能的新技术。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
摘要:中风是美国发病率的第一原因,在全球范围内死亡的第二名。对缺血性中风的更有效疗法的医疗需求至关重要,随着人口统计学向老年人的转变,这种需求正在增加。最近,一些研究报告了干细胞衍生的外泌体作为Stoke无细胞治疗的新候选者的治疗潜力。本评论的重点是将干细胞衍生的外泌体用作中风患者的潜在治疗工具。在安全性,成本和便利性方面,使用外泌体的治疗比干细胞移植具有明显的临床优势,并且由于监管里程碑较少,因此减少了基准潜伏期。在本评论文章中,我们关注(1)卒中治疗中外泌体的治疗潜力,(2)上游和下游生产的优化过程,以及(3)临床前的中风动物模型中的临床前应用。最后,我们讨论了外部疗法在未来临床应用中面临的局限性和挑战。
简介:俯仰是一种全身运动,涉及人体段的顺序旋转,导致释放时的球速度接近最大(Pappas等,1985)。人体与地面之间的相互作用对于俯仰生物力学至关重要(MacWilliams等,1998)。我们在这项研究中的目的是确定每条腿在释放球前产生线性和角度脉冲中的作用。每条腿在棒球投球中的作用已经长期存在。Elliot等。 (1988)建议,后腿向前驱动身体,而前腿为骨盆和躯干提供了稳定的底座。 MacWilliams等。 (1998)发现,前腿是将“向前和垂直动量转变为旋转组件”的“锚”。 使用能量流分析,Howenstein等。 (2020)建议,后腿推进动力学有助于传递线性力量,而前腿制动动力学会产生旋转力。 尽管峰值地面反作用力(GRF)值与俯仰速度有关(Elliot等,1988; McNally等人,2015年,Macwilliams等,1998),仅在grf方面提供了有限的地面相互作用的视图,并且在球场上如何调节身体的线性和角度和角度的角度(McNelly and McNally and and and and and and and and and and and。 虽然在俯仰期间观察到骨盆和躯干的片段旋转,但后腿和前腿在俯仰上在俯仰期间产生COM的角脉冲的相对贡献在很大程度上是未知的。 (2018)。Elliot等。(1988)建议,后腿向前驱动身体,而前腿为骨盆和躯干提供了稳定的底座。MacWilliams等。(1998)发现,前腿是将“向前和垂直动量转变为旋转组件”的“锚”。使用能量流分析,Howenstein等。(2020)建议,后腿推进动力学有助于传递线性力量,而前腿制动动力学会产生旋转力。尽管峰值地面反作用力(GRF)值与俯仰速度有关(Elliot等,1988; McNally等人,2015年,Macwilliams等,1998),仅在grf方面提供了有限的地面相互作用的视图,并且在球场上如何调节身体的线性和角度和角度的角度(McNelly and McNally and and and and and and and and and and and。虽然在俯仰期间观察到骨盆和躯干的片段旋转,但后腿和前腿在俯仰上在俯仰期间产生COM的角脉冲的相对贡献在很大程度上是未知的。(2018)。Yanai等人已经计算出身体围绕垂直轴的角度动量。但是,对沥青生物力学的影响需要进一步的解释。了解每条腿如何有助于净线性冲动和净角度冲动,预计将提供有意义的见解个人在球场期间用来调节线性和角度动量的策略。我们假设后腿负责从土丘到本垒板产生前向线性冲动,并且前腿负责产生向后线性冲动,净线性脉冲产生了身体水平动量向本垒板的增加。相反,我们假设前腿产生的GRF会导致对通过COM从Mound到第一垒的水平轴更大的角度冲动,而不是后腿。
摘要 癌症是导致疾病相关死亡的主要元凶之一,发病率高,死亡率也高。癌症发病隐匿、早期检测困难以及缺乏广谱有效的多癌种治疗靶点,几十年来限制了癌症患者生存期的延长。因此,一个涉及各种癌症相关信号通路和不同癌症的多功能治疗靶点可能对癌症靶向治疗更有效。USP4是DUBs成员之一,参与去泛素化(泛素化的逆过程),可以调节各种经典的癌症相关信号通路,从而在肿瘤发生和发展等病理生理过程中发挥重要作用。最近发现,USP4对细胞增殖、迁移和侵袭以及各种肿瘤的凋亡具有多种影响。此外,USP4还可以作为多种癌症的预后生物标志物。本文将对USP4的调控机制、相关信号通路、病理生理功能以及在各种癌症中的作用进行全面介绍,以期帮助我们更好地理解其生物学功能,并改进未来的研究,构建合适的USP4靶向癌症治疗体系。关键词:USP4,翻译后修饰,癌症,机制,治疗靶点
摘要:肿瘤坏死因子-Alpha(TNF-α)诱导的蛋白8(TNFAIP8/TIPE)家族,包括TNFAIP8(TIPE),TNFAIP8,例如蛋白质1(TNFAIP8L1/TIPE1) (TNFAIP8L3/TIPE3),在调节炎症反应,免疫稳态和癌症发展中起着至关重要的作用。在过去的十年中,研究表明,Tipe2蛋白在不同的细胞和组织中差异表达。TIPE2蛋白的失调可能导致炎症反应和免疫稳态的失调,并改变癌症的基本特征。考虑到TIPE2在各种人类疾病的诊断,治疗和预后中的不可估量的值,该综述将重点介绍TIPE2在炎症,免疫和癌症中的表达模式,结构和调节作用。关键字:TIPE2,炎症,免疫稳态,肿瘤,肿瘤发生,转移
创伤性脑损伤(TBI)是由于该疾病有效预防和治疗策略的有限可用性,是全球死亡率的重要原因。有效的分子生物标志物可能有助于确定预后并促进TBI的治疗效率。microRNA-124(miR-124)在大脑中最丰富地表达,并通过调节细胞凋亡和增殖的病理过程在多种疾病中发挥不同的生物学作用。最近,越来越多的证据证明了miR-124和TBI之间的关联,但仍然缺乏相关文献来总结有关该主题的当前证据。基于这篇综述,我们发现miR-124是细胞凋亡和增殖的调节因素,并且与TBI的病理生理发展也有密切相关。miR-124通过与多种生物分子和信号通路相互作用,例如JNK,VAMP-3,RELA/APOE,PDE4B/MTOR,MDK/TLR4/NFR4/NF-κB,DAPK1/NR2B,JAK/JAK/STAT3,PI3K/akt,RAS,RAS,RAS/erk/erk/erk/erk/erk/erk/er,已经确定了上调miR-124在促进TBI恢复方面的潜在受益。miRNA纳米载体系统技术的进步为miR-124成为TBI的新型治疗靶标提供了一个机会。然而,miR-124在TBI中作用的基本机制需要进一步研究。此外,还需要全面的大规模研究来评估miR-124作为TBI的治疗靶点的临床意义。
国防部委托国防分析研究所 (IDA) 开展一项独立研究,审查并提出有关导弹防御局 (MDA) 的长期使命、角色和结构的建议。完整的任务将在第一章中描述。审查范围包括与陆军、海军、空军、联合参谋部、国防部政策副部长、国防部采购、技术和后勤副部长、作战测试与评估主任、项目分析与评估、国防信息系统局以及 MDA 的领导进行小组讨论。还与支持 MDA 的承包商进行了几次讨论。审查还包括对美国战略司令部 (USSTRATCOM)、美国北方司令部、空军太空司令部、导弹防御一体化和作战中心以及红石兵工厂的 MDA 进行实地考察。
护理助理是英格兰的一般护理角色,它弥合了医疗保健支持工人和注册护士之间的差距,以在一系列不同的健康和社会护理环境中提供动手以人为本的以人为本的护理。护理伙伴是护理团队的成员,他们获得了由护理和助产士委员会(NMC)批准的提供商授予的护理副基金会学位,通常涉及两年的高级研究,使他们能够执行比医疗保健助理更复杂和重要的任务,但与注册的护士相同。通过额外的培训,该角色还提供了进入注册护理专业的进步路线。引入了该职位,以帮助建立护理人员的能力和提供高质量的护理能力,同时支持护士和更广泛的多学科团队,以专注于更复杂的临床职责。
1 Siliman University-Angelo King Center for Research and Environmental Management, 2/F Su Marine Lab., Siliman Beach, Dumafete City, 6200 2 Institute of Biological Sciences, College of Arts and Sciences, Colseum of the Philippines Burgos Ave., Ermita, Manila 4 Tropical Marine Research for Conservation, 6363 Lakewood St., San Diego, CA 92122, USA 5菲律宾菲律宾大学林业与自然资源学院森林生物科学系,菲律宾学院。生物科学,艺术与科学学院和自然历史博物馆,菲律宾大学洛斯巴尼奥斯大学,学院,4031 Laguna 7 Haribon Foundation,Kalayaan Ave. 140 Kalayaan Ave.,Diliman,Quezon City1 Siliman University-Angelo King Center for Research and Environmental Management, 2/F Su Marine Lab., Siliman Beach, Dumafete City, 6200 2 Institute of Biological Sciences, College of Arts and Sciences, Colseum of the Philippines Burgos Ave., Ermita, Manila 4 Tropical Marine Research for Conservation, 6363 Lakewood St., San Diego, CA 92122, USA 5菲律宾菲律宾大学林业与自然资源学院森林生物科学系,菲律宾学院。生物科学,艺术与科学学院和自然历史博物馆,菲律宾大学洛斯巴尼奥斯大学,学院,4031 Laguna 7 Haribon Foundation,Kalayaan Ave. 140 Kalayaan Ave.,Diliman,Quezon City