私人安置的书籍建设过程将在本新闻稿发表后立即开始,并在2024年10月23日左右的欧洲文本布鲁塞尔,欧洲文本阿姆斯特丹和巴黎的欧洲网站交易小时后结束。该公司已要求比利时(“ FSMA”)(“ FSMA”)是该公司的主要主管,以暂停公司在簿记期间在布鲁塞尔(Euronext Brussels),布鲁塞尔(Euronext Brussels),阿姆斯特丹(Euronext Amsterdam)和欧洲欧洲债券(Euronext Amsterdam and Euronext Paris)的股票上的贸易。FSMA已指示布鲁塞尔,欧洲文本,阿姆斯特丹欧洲网站和欧洲斯特拉斯特巴黎,并向法国的荷兰当局和法国的AutoritédesMarchés金融家通报了贸易暂停。公司的活动将继续,并且不会受到临时贸易暂停的影响。将暂停该公司股份的贸易,以在新闻稿中发布私人展览会结果,包括新股票和发行价格,在书本建设过程完成后,预计将在2024年10月24日左右开放之前或在2024年10月24日左右开放之前进行。公司与法律顾问和FSMA保持密切联系,以确保暂停贸易符合所有适用法律。
• 为了显著改善许可证处理,OCM 在 2024 年 10 月实施了单点联系 (SPOC) 许可审查模型,以简化和集中许可流程。这一努力通过在整个审查过程中为申请人提供明确的联系点,并使官方沟通更加一致和客户友好,提高了利益相关者的透明度。通过将所有许可证审查功能整合到 OCM 的许可团队下,SPOC 模型消除了之前的多团队系统,确保申请人有专门的审查员指导他们从头到尾完成整个过程。 • 在解决了五个月的诉讼后,OCM 于 2023 年底继续推进有条件成人用零售药房 (CAURD) 计划。OCM 收到了 900 多份 CAURD 许可证申请,截至 2024 年 12 月 15 日,已有 218 份申请获得许可证,351 份申请获得临时批准。其中,176 家 CAURD 许可证持有者已于 2024 年 12 月中旬开始营业。•《大麻法》允许现有的注册组织 (RO) 从作为医疗 RO 运营转变为成人用配药注册组织 (ROD) 或非配药注册组织 (ROND)。ROD 有资格在 RO 的最多三家药房(共置药房)共同经营医疗和成人用销售。截至 2024 年 12 月,其中四家 ROD 已开始成人用业务。
蒙邦诺特-圣马丁水边环形交叉路口 H 04:38 06:31 06:53 07:05 07:15 07:25 07:36 07:44 07:54 08:01 08:11 08:16 08:21 08:29 08:31 08:36 08:41 08:46 08:46 08:51 08:59 09:01 09:06 09:14 09:21 09:27 09:42 09:52 10:18 10:48 11:18 11:48 12:18 12:49 13:19 13:48 14:18 14:48 15:18 15:48 16:18 16:51 17:01 17:11 17:21 17:32 17:42 17:52 18:02 18:17 18:32 18:42 18:52 19:02 19:12 19:22 19:42 20:01 20:49 22:49 23:49
13.1。化学疗法13.2。有针对性的治疗13.3。免疫治疗13.4。各种抗肿瘤剂13.5。肿瘤学中的抗激素13.6。在本章中讨论了化学疗法,靶向治疗,免疫治疗,各种抗肿瘤剂,抗激素剂和排毒剂的抗肿瘤药物不良影响的剂。化学疗法和靶向治疗直接与癌细胞相反。化学疗法的细胞毒性作用不会区分癌细胞和快速平面的正常细胞。另一方面,靶向治疗专门针对癌细胞或肿瘤周围的组织。靶向治疗被细分为单克隆抗体,蛋白 - 激酶抑制剂,POW抑制剂,蛋白质上抑制剂和刺猬信号途径的抑制剂。免疫疗法旨在刺激免疫系统对癌细胞反应。免疫疗法被细分为免疫检查点抑制剂,CAR-T细胞疗法和各种免疫治疗剂。红细胞生在2.3.1中讨论了由于化学疗法而在贫血中使用。 。在2.3.3中讨论了用于化学疗法的造血 - 生长因子。 。
他们给我留下了深刻的印象:关于患有严重遗传疾病的幼儿的故事。有一种新的基因疗法为长期健康的生活提供希望。有时,如果未偿还昂贵的治疗方法,则会采取众筹活动。不幸的是,治疗并不总是产生预期的。除了所有情绪外,高期望和高成本都是这些类型的信息的反复元素。这些期望并非来自任何地方。基因疗法的技术发展 - 调整DNA的医疗治疗 - 近年来彼此相互缩放,对患者可能意味着很多。高昂的成本通常是有关基因疗法的社会和政治讨论的主题。但是,技术和成本并不是决定基因疗法是否会很快改善患者生活的唯一因素。我们从多年的研究经验中知道,新技术的发展通常忽略了影响其嵌入的广泛社会因素的分析。鉴于DNA技术的可能性日益增长,公众投资不断增长,因此对此明确洞察的紧迫性正在增长。 从我们的独立立场中,我们围绕了基因治疗的研究,创新和实施的力场。 我们得出的结论是,在当前的政府政策中,许多方面都没有得到充实。 Dr. IR博士鉴于DNA技术的可能性日益增长,公众投资不断增长,因此对此明确洞察的紧迫性正在增长。从我们的独立立场中,我们围绕了基因治疗的研究,创新和实施的力场。我们得出的结论是,在当前的政府政策中,许多方面都没有得到充实。Dr. IR博士Dr. IR博士我们提请人们注意基因疗法的有限负担,我们陈述了政策制定者和政客使基因疗法成为我们公共卫生保健中负责任的地方的机会。这项研究是我们对CRISPR-CAS9和其他基因编辑技术对社会的影响的广泛探索的一部分。在我们的2023 - 2024年工作计划中,我们将继续关注这一点。我们想为该技术的负责发展做出贡献。因此,在不久的将来,您和我可以阅读越来越多的有关遗传性疾病的年轻人的信息,这些疾病因基因疗法而面临漫长而健康的生活。eefje Cuppen董事Rathenau Institute
并且,了解某些事物的工作原理以及设计规格与物理和技术数据及限制之间的关系非常重要。在项目中,您还将学习一般的工程技能,例如报告、演示和团队合作项目。第二年,您将继续学习数学,并进一步熟悉其他学科,如能源技术、信号和系统、微电子和电信。在第二年的集成项目中,您将深入研究信号处理的应用。第三季度有一门选修课。第四季度有一个选修模块(主题和项目的结合),其中讨论未来电气工程在特定应用领域(例如能源、医疗保健、通信)的发展。第三年的上半年是辅修课程,以拓宽你的知识面和/或硕士选择。然后,您将再学习三门课程(包括一门选修课),并通过学士毕业项目完成您的学业。您将所有知识应用于(原始)设计甚至新电气系统的原型。
VI-与合作伙伴和德国开发银行(KfW)的协调。 § 1º UGP 的职责细节在单独协议和项目操作手册 (MOP) 中有详细说明。 § 2º 该项目将设立一个国际咨询机构,为 UGP 提供技术和行政支持。 § 3º UGP 可在各自职权范围内寻求 SFB 和 IICA 其他领域的支持。 § 4º 项目运作将按照项目运作手册(MOP)中描述的程序进行。第五条 UGP 将得到实施伙伴的支持,即:I - 巴西农业研究公司 (Embrapa); II - 马托格罗索州环境部(Sema-MT); III - 朗多尼亚州环境发展秘书处(Sedam-RO); IV - 帕拉州环境与可持续发展国家秘书处(Semas-PA)。唯一款。为了履行其职责,UGP 将依靠与执行伙伴任命的代表直接对话,执行伙伴指定如下:I - 来自 Embrapa:a) Silvio Brienza Junior(持有人); b) Silvia Satiko Onoyama Mori(替补); II - 来自 Sema-MT:a) Michele Kovacs (持有人); b) 朱莉安娜·梅内塞斯·德卡瓦略 (第一替补); c) Luciane Bertinatto(第二替补)。 III - 来自 Sedam-RO:a) Hueriqui Charles Lopes Pereira (持有人); b)乔瓦尼·马克斯·罗萨(候补人); IV - 来自 Semas-PA:a) Cinthia Fonseca Coelho da Costa (持有人); b) Brenda Melise Morbach Paredes Hachem(替补)。第六条 UGP 将在必要时召开管理和监督会议。第 7 条 2024 年 1 月 22 日颁布的 SFB 条例第 203 号,于 2024 年 1 月 23 日第 16 期《联盟官方公报》第 2 部分第 31 页公布,现予以废止。 第 8 条 本条例自 2025 年 2 月 1 日起生效。
1。jao,J.Y。等。微生物暗物质即将到来:挑战和机遇。国家科学评论8(2021)。2。Rinke,C。等。 对微生物暗物质的系统发育和编码潜力的见解。 自然499,431-437(2013)。 3。 Yarza,P。等。 使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。 自然评论微生物学12,635-645(2014)。 4。 Dykhuizen,D.E。 圣诞老人重新审视:为什么有这么多种细菌? Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。 5。 Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Rinke,C。等。对微生物暗物质的系统发育和编码潜力的见解。自然499,431-437(2013)。3。Yarza,P。等。使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。自然评论微生物学12,635-645(2014)。4。Dykhuizen,D.E。圣诞老人重新审视:为什么有这么多种细菌?Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。5。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。&Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。国际系统和进化微生物学杂志70,5607-5612(2020)。6。Chaffron,S.,Rehrauer,H.,Pernthaler,J.&von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。基因组研究20,947-959(2010)。7。QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。QIN,J.J。等。通过元基因组测序建立的人类肠道微生物基因目录。自然464,59-70(2010)。8。Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Methé,B.A。等。人类微生物组研究的框架。自然486,215-221(2012)。9。lok,C。挖掘微生物暗物质。10。自然522,270-273(2015)。Medema,M.H。,De Rond,T。&Moore,B.S。 采矿基因组阐明了生命的专业化学。 自然评论遗传学22,553-571(2021)。 11。 Pavlopoulos,G.A。 等。 通过全球宏基因组学解开功能性暗物质。 自然622,594-602(2023)。 12。 Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Medema,M.H。,De Rond,T。&Moore,B.S。采矿基因组阐明了生命的专业化学。自然评论遗传学22,553-571(2021)。11。Pavlopoulos,G.A。等。通过全球宏基因组学解开功能性暗物质。自然622,594-602(2023)。12。Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Altae-Tran,H。等。揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Science 382,EADI1910(2023)。13。Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Wilkinson,B。&Micklefield,J。采矿和工程自然产品生物合成途径。自然化学生物学3,379-386(2007)。14。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。天然产品报告40,89-127(2023)。15。Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Goig,G.A。等。直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。柳叶刀微生物1,E175-E183(2020)。16。刘,Y.X。等。微生物组数据的扩增子和宏基因组分析的实用指南。蛋白质和细胞12,315-330(2021)。17。Ustick,L.J。等。宏基因组分析揭示了海洋营养限制的全球规模模式。科学372,287-291(2021)。18。Nissen,J.N。 等。Nissen,J.N。等。使用深层自动编码器改进了元基因组套筒和组装。自然生物技术39,555-560(2021)。
本体哲学柏拉图、普罗泰戈拉;克拉底鲁;阿尔西比亚德斯;共和國,第二卷;泰阿泰德;菲德拉;蒂迈欧 亚里士多德,《论灵魂》;尼各马可伦理学;政治,第一卷 卢克莱修,《论自然》 奥古斯丁,《谎言》;主人;上帝之城托马斯·阿奎那,《关于真理的争议问题》,第十一卷:大师皮科·德拉·米兰多拉,《论人的尊严》尼古拉斯·马基雅维利,《论提图斯·利维的第一个十年》蒙田,散文集:“论食人族”、“论马车”弗朗西斯·培根,《新工具论》勒内·笛卡尔,《论方法》;男人 ;形而上学的冥想;灵魂的激情布莱斯·帕斯卡,思想托马斯·霍布斯,利维坦,部分。我 ;公民马勒伯朗士,《追求真理》巴鲁克·斯宾诺莎,《伦理学》,第 3 部分。二和三;政治论文,部分。 II 约翰·洛克,《人类理解论》,第三卷;关于教育的一些想法 莱布尼茨,《人类理解新论》,第三卷 詹巴蒂斯塔·维科,《新科学》[1725] 大卫·休谟,《人性论》[1739-1740] 孟德斯鸠,《论法律的精神》[1748],第十九卷 拉美特利,《人—机器》[1748] 让·勒朗·达朗贝尔,《百科全书前言》[1751] 孔狄亚克,《感觉论》[1754] 让-雅克·卢梭,《论科学与艺术》;论人类不平等的起源和基础;爱弥儿或教育[1762];语言起源论伊曼纽尔·康德,历史小品; 《判断力批判》[1790]从实用角度看人类学;关于教育的思考孔多塞,《人类心灵进步的历史图景大纲》[1794]费希特,《人的命运》[1800]亚瑟·叔本华,《作为意志和表象的世界》[1819]黑格尔,《精神哲学; 《法哲学原理》[1820],第 36 部分。 III 奥古斯特·孔德,《实证哲学课程》[1830-1835],第 47 至 51 课; 《论积极精神》 [1844] 托克维尔,《论美国的民主》 [1840] 卡尔·马克思,《1844年手稿》 《德意志意识形态》[1845年];资本论》第一卷安托万·奥古斯丁·古尔诺 (Antoine-Augustin Cournot),关于我们知识的基础和哲学批评的特征的论文;关于科学和历史基本思想联系的论文[1861]约翰·斯图尔特·密尔,归纳和演绎逻辑体系;奥古斯特·孔德和实证主义 [1865] 弗里德里希·尼采,《人性的,太人性的》道德的谱系;快乐的科学;权力意志威廉·狄尔泰,《人文科学研究导论》[1883];心理科学中历史世界的建构[1910]西格蒙德·弗洛伊德,《精神分析五课》[1910];对精神分析运动史的贡献[1914];超越快乐原则[1920];幻觉的未来 [1927] 亨利·柏格森,物质与记忆;創造進化;道德和宗教的两个源泉路德维希·维特根斯坦关于弗雷泽的《金枝》的评论;哲学研究恩斯特·卡西尔,《人论》;符号形式哲学,t。我 ;语言与神话胡塞尔,《逻辑研究》,第 3 部分。二;欧洲科学的危机与先验现象学;欧洲人道主义和哲学的危机马丁·海德格尔,《逻辑与语言本质问题》[1934];关于人文主义的信让·保罗·萨特,《存在与虚无》;方法问题;存在主义是一种人道主义 [1946] 列奥·施特劳斯,《迫害与写作的艺术》 [1952] 吉尔伯特·西蒙东,《论技术对象的存在方式》 [1958],部分。 III 和结论莫里斯·梅洛-庞蒂,《知觉现象学》;世间散文; 《符号》[1960] 汉娜·阿伦特,《人的条件》[1958];文化危机[1961]
M. M. Zedouc 1,†,Caire Blin 2, *,†,Nico L.L.louwen 1,豪尔赫(Jorge)的名字,1,卢雷罗(Loureiro)1,Chantal D. Bader 3,Constance B。女人3、6,何塞D.D。节日7,猜测14,我不知道Hanif 15,Eric J.N.由55、70、75,Rile和S59、60,拉奎尔hag AS 67,力量Charri 25,77,77,Hyukjae Choi Chroy 83,Melinda S31,夏洛特和OW,32岁, Robin T以弗39, Al-Sumukh A. Alharthi 52,Mariela Rojo 53,Amr A. Arishi Avalon 56,J。Abr和Av Elar-Rivas 57,Kyle K. AXT 34,Hellen B克里斯汀·比梅尔曼斯(Christine Beemelmanns)3,24, Ricardo M. Borges 67,Rainer Bordes 68,69,Milena Breit 16,17, Cano-Prieto 2,Joy 74,Victor J.31,夏洛特和OW,32岁, Robin T以弗39, Al-Sumukh A. Alharthi 52,Mariela Rojo 53,Amr A. Arishi Avalon 56,J。Abr和Av Elar-Rivas 57,Kyle K. AXT 34,Hellen B克里斯汀·比梅尔曼斯(Christine Beemelmanns)3,24, Ricardo M. Borges 67,Rainer Bordes 68,69,Milena Breit 16,17, Cano-Prieto 2,Joy 74,Victor J.JéromeCollemare 82,JAC。路易斯·卡莱布·达马斯·拉莫斯(Luis Caleb Damas-Ramos 2),达米亚尼(Damiani)87的泰特斯(Titus of Damiani 87在1 95,Erin A. Garza 96,Athina Gavriilidou 23,Andrea Gentiles 97,98,Jennif,hans Gerstmans 100,101,102, Greco 52,Juan E. Green 46,Sebastian War 7,9,Shaday Flores 104, 107,Kristina Haslinger 108,Beibel He 109 109 109 87,Jethro L. Hemmann 110,Hindr和Hindr和1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 113 h 2,当耶和华AB 1,114,115,Thanh-Hau Huynh 116和手2,Eunah Jeong 81,Jiayi Jing 1,Jung Jng 116,Yong Kang 116, 121,金122,罗伯特·A。