肺癌是全世界癌症死亡的主要原因。大多数 (80-85%) 肺癌病例被归类为非小细胞肺癌 (NSCLC)。在 NSCLC 中,腺癌 (AC) 和鳞状细胞癌 (SCC) 是最常见的。NSCLC 的组织学和免疫组织化学检查是一种基本的诊断工具,但不足以做出全面的治疗决策。在某些 NSCLC 患者中,主要是腺癌,可以确认驱动基因的分子改变,例如 EGFR 、 KRAS 、 HER2 、 ALK 、 MET 、 BRAF 、 RET 、 ROS1 和 NTRK。其中一些变化的频率因种族以及吸烟者和非吸烟者而异。使用现代方法(如下一代测序)对 NSCLC 进行分子诊断对于评估有针对性的个性化治疗至关重要。近年来,人们在理解分子研究对 NSCLC 精准治疗的重要性方面取得了突破。许多新药获得批准,包括酪氨酸激酶和免疫检查点抑制剂。针对 miRNA 等新型分子的临床试验和针对 NSCLC 患者的 CAR-T 细胞(嵌合抗原受体 - T 细胞)试验正在进行中。关键词:非小细胞肺癌、驱动基因、分子改变、靶向治疗
结直肠癌 (CRC) 是一种异质性疾病,不同的基因变异在其发病机制和进展中发挥作用,并为治疗干预提供了潜力。转移性 CRC (mCRC) 的预测性生物标志物研究主要集中于鉴定对抗表皮生长因子受体单克隆抗体有反应或耐药性的生物标志物。在这方面,国际指南建议仅对 mCRC 患者进行 KRAS 、 NRAS 和 BRAF 突变以及微卫星不稳定性检测。然而,新检测方法的使用引发了与这些生物标志物相关的问题,例如亚克隆 RAS 突变的存在或罕见的非 V600 BRAF 变体的临床解释。此外,最近的研究还发现了许多新型生物标志物,包括 ERBB2 的扩增、ERBB2、MAP2K1 和 NF1 的突变以及 ALK、ROS1、NTRK 和 RET 的重排。 POLE 突变和肿瘤突变负荷水平也似乎是 CRC 免疫疗法反应的可能生物标志物。最后,基于基因表达谱的 CRC 共识分子亚型分类具有预后和预测意义。为了提高 mCRC 患者的精准/个性化医疗,在未来的某一天,整合所有这些信息可能是必要的。
肺癌是全球癌症死亡的主要原因[1]。大约85%的肺癌是非小细胞肺癌(NSCLCS)[2],其中最常见的亚型是肺腺癌Noma,然后是鳞状细胞癌[3]。在过去的20年中,晚期NSCLC的治疗已从细胞毒性疗法中演变而成,这些疗法导致反应率较低,疾病快速复发和短期生存,转变为针对通过分子分析或免疫疗法(例如免疫检查点抑制剂)鉴定的NSCLC特定基因组改变的疗法[3]。这些新疗法已导致许多患者的生存益处;但是,转移性疾病患者的长期生存率仍然非常低[3]。在NSCLC中,NSCLC中迅速增长的迅速或新兴的致癌驱动器列表,例如点突变,插入/删除,放大,例如EGFR,BRAF,KRAF,KRAS,MET,MET,ERBB2/HER2/HER2)或重新安排(例如6]。有效的靶向疗法最近出现了由许多基因组改变驱动的NSCLC的PA。
ABL1、ABL2、AKT1、ALK、APC、AR、ARAF、ARID1A、ARID1B、ATM、ATR、ATRX、BAP1、BARD1、BRAF、BRCA1、BRCA2、BRIP1、C11orf65、CCND1、CDH1、CDK12、CDK4、CDKN2A、CDX2、CHEK1、CHEK2、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCL、FBXW7、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、FOXA1、FOXL2、GATA3、GNA11、GNAQ、GNAS、HNF1A、HRAS、IDH1、IDH2、INPP4B、 JAK1、JAK2、JAK3、KDM5C、KDM6A、KEAP1、KIT、KRAS、MAP2K1、MAP2K2、MAPK1、MET(外显子 14 跳跃)突变)、MLH1、MPL、MSH2、MSH6、MTOR、MUTYH、MYC、MYCN、MYD88、NF1、NF2、NOTCH1、NPM1、NRAS、NTRK1、NTRK3、PALB2、PBRM1、PDGFRA、PIK3CA、PMS2、POLD1、POLE、PPP2R2A、PTCH1、PTEN、PTPN11、RAD51B、RAD51C、RAD51D、RAD54L、RAF1、RB1、RET、RHEB、RHOA、RIT1、ROS1、SETD2、SF3B1、 SMAD4、SMARCB1、SMO、SPOP、SRC、STK11、TERT、TP53、TSC1、TSC2、VHL
引言肺癌是全球癌症发病率和死亡率的主要原因(1)。肺癌的总体 5 年生存率仍然很低(2)。先前的分子研究已经确定了几种致癌驱动因素,并促进了由 EGFR、ALK、RET 或 ROS1 改变驱动的肺癌令人满意的治疗方法的开发(3)。然而,对于 KRAS 获得功能突变,有效的治疗方法很少,大约 25% 的肺癌病例会发生这种突变。对 KRAS 蛋白结构、动力学和信号转导的了解仍未得到满足,这在很大程度上阻碍了直接或间接针对该致癌基因的特定抑制剂的开发。选择性 KRAS 抑制剂 (KRASi) sotorasib 可与突变半胱氨酸残基形成稳定的共价键,特异性靶向 KRAS(G12C),已获美国食品药品管理局批准,用于携带 KRAS(G12C) 突变的局部晚期或转移性非小细胞肺癌的二线治疗 (4)。然而,治疗期间不可避免地会出现耐药性 (5, 6)。重要的是,肺癌中其他经常突变的 KRAS 形式,如 KRAS(G12D) 和 KRAS(G12V),仍然无法用药 (7)。靶向 KRAS 的下游效应物,如 MEK,
肺癌 (LC) 是全球最常见的恶性肿瘤之一,也是导致癌症死亡的主要原因。LC 的常见致癌驱动因素主要包括 EGFR、ALK、KRAS、BRAF、ROS1 和 MET 的基因变异。选择性靶向这些变异或/及其下游信号通路的小抑制分子和抗体已被批准用于治疗 LC。不幸的是,在对这些靶向疗法产生最初的积极反应后,由于出现耐药机制(例如这些基因的新突变和替代信号通路的激活),大量患者的预后不佳。在过去十年中,人们已经清楚地认识到,除非通过治疗干预诱导有效的抗肿瘤免疫反应,否则 LC 不可能治愈。免疫原性细胞死亡 (ICD) 是一个新出现的概念,是一种受调节的细胞死亡形式,足以激活针对肿瘤细胞的适应性免疫反应。它将垂死的癌细胞转化为治疗性疫苗,并刺激持久的保护性抗肿瘤免疫。本综述讨论了肺癌中可靶向的关键基因畸变及其 ICD 的潜在机制。总结了诱导 ICD 的各种药物,并进一步探讨了在肺癌免疫治疗中利用 ICD 的可能性。
NSCLC。由于靶向疗法主要用于治疗转移性疾病患者,因此快速检测这些变异可能会加快有症状且需要最有效疗法的患者的治疗决策。检测此类变异的准确性和可行性一直具有挑战性。由于担心组织耗竭,不建议通过多个独立的单基因检测(例如免疫组织化学和荧光原位杂交 (FISH))进行常规检测。下一代测序 (NGS) 面板(理想情况下包括基于 RNA 的组件)通常是首选,因为它们可以评估所有相关突变的存在,并且比多个单基因测试更具成本效益。9 – 12 然而,较长的周转时间(2 – 4 周)削弱了它们在必须及时做出患者管理决策的情况下的临床价值。在这些情况下,强烈需要快速准确的检测,并且组织要求最少。主要使用原型试剂盒的超快速基因融合检测的 Beta 测试报告显示了令人鼓舞的准确性结果。13 – 15 在当前的研究中,我们使用制造的试剂盒评估了这种最近上市的检测的临床实用性。我们测试了其准确性、组织接受度和检测限,以捕获涉及 ALK、ROS1、RET、NTRK1/2/3 基因和 MET 外显子 14 跳跃变异的临床相关基因融合。
肺癌仍然是癌症发病率和死亡率的第一大原因,2018年全球估计有200多万新发病例和180万人死亡(1),2018年因肺癌死亡人数接近所有癌症死亡人数的五分之一(1)。肺癌的主要病理类型包括非小细胞肺癌(NSCLC)和小细胞肺癌(SCLC),NSCLC约占所有病例的80%–85%(2)。NSCLC的治疗是分期治疗。对于I期或II期患者,如无禁忌症,应行完整的手术切除。无法切除的患者应考虑化疗,联合/不联合放疗。长期以来,以铂类为基础的化疗一直是转移性NSCLC患者一线治疗的主要选择(3)。自20世纪90年代以来,随着对肺癌驱动基因的认识,靶向治疗[包括但不限于针对表皮生长因子受体(EGFR)突变、KRAS突变、ALK基因重排和ROS1重排的药物]改变了驱动基因突变NSCLC的治疗,显著延长了患者的生存期(4,5)。然而,尽管取得了长足的进步和新药的开发,预计5年总生存率(OS)仍仅为18%(6)。因此,迫切需要开发有效且低毒性的NSCLC治疗方法。
简介 肺癌 (LC) 是全球癌症相关死亡的主要原因。1 根据其临床病理特征,肺癌大致可分为非小细胞肺癌 (NSCLC) 或小细胞肺癌。NSCLC 占所有 LC 病例的 85% 以上。1 脑转移 (BM) 影响多达 50% 的晚期 NSCLC 患者,2 导致存活率特别低,3 从 BM 诊断开始的中位总生存期 (mOS) 约为 2.5 年;同时,中枢神经系统 (CNS) 无进展生存期 (PFS) 约为 1.2 年。 4 驱动NSCLC的致癌基因突变包括表皮生长因子受体(EGFR)、间变性淋巴瘤激酶(ALK)、ROS原癌基因1(ROS1)、Kirsten大鼠肉瘤(KRAS)、间充质上皮转化因子(MET)以及转染过程中重排的原癌基因(RET)。得益于此类驱动基因突变的检测,我们进入了基因分型驱动的LC患者个性化治疗的新时代。5 在NSCLC中,KRAS突变的患病率高达30%。6 蛋白质中最常见的密码子变异是从氨基酸甘氨酸到半胱氨酸(G12C)的突变,约占KRAS突变的39% 7 ,发生在约14%的肺腺癌(LUAD)中。 8 然而,KRAS 长期以来被认为是无法治疗的靶点。
结果 总共有 2,694 名患者被纳入 1L 治疗决策影响评估。及时接受 CGP 使匹配靶向治疗的使用率提高了 14 个百分点(使用 CGP 的 17% vs 不使用的 2.8%),使精准免疫检查点抑制剂 (ICPI) 的使用率提高了 14 个百分点(使用 CGP 的 18% vs 不使用的 3.9%)。及时接受 CGP 可使 ALK/EGFR/RET/ROS1 阳性患者的 ICPI 使用率降低约 31 个百分点,通过及时接受 CGP 来指导 1L 治疗选择,预计每位患者无效 ICPI 治疗费用可减少 13,659.37 美元。 CGP 使患者获益延长至现实世界中治疗停止时间(治疗停止时间中位数:3.9 个月 vs 10 个月 [风险比,HR,0.54 [95% CI,0.42 至 0.70];P = 1.9E-06;调整风险比 [aHR],0.50 [95% CI,0.38 至 0.67];P = 2.0E-06)在 1L 驱动因素阳性患者中。这种影响对于现实世界中的总体生存率并不显著(中位总体生存率:32 个月 vs 29 个月 [HR,1.2 [95% CI,0.84 至 1.67];P = .33;aHR,1.4 [95% CI,0.92 至 1.99];P = .12)。
