本研究探讨了文本呈现媒介及其对青少年理解力的影响。随着青少年越来越多地通过数字方式消费内容,研究人员研究了纸质材料是否可以解决在线阅读中经常出现的认知超负荷和注意力下降等问题。具体来说,这项研究试图了解纸质文本如何提高青少年读者的认知参与度和记忆力。评论表明,由于纸质格式具有触感和没有数字干扰,它们往往更有利于青少年读者的更深层次沉浸和更好的回忆。值得注意的是,研究结果表明,纸张的物理触感有助于集中注意力,而数字文本经常会让人粗略地浏览,不利于理解。与在线阅读的学生相比,分析纸质材料的学生的记忆力高出约 15-20%。然而,分析也承认,数字平台提供的便利性和可访问性可能对某些任务或阅读偏好有利。
1)发酵,变质和成熟之间的差异!- 从微生物中学到的效果,从定义和机制中学到。deshabro.com,于2022年5月28日出版,https://deshablo.com/2018/0815/hakkkouhuhai/(2023年4月浏览)。2)Kuniko Aida。(2020)从食品培养,食物卫生和生物学角度研究传统发酵食品的研究。日本烹饪科学杂志,53,69-73。3)Takeo Fujii。(2011)发酵和腐烂之间的差异-Shiokara,Kusaya和Funazushi。日本酿造学会杂志,106,174-182。4)发酵和变质有什么区别?Marukome,发酵美食,网络杂志,发表于2018年10月25日,https://www.marukome.co.jp/marukome_omiso/hakkkoubishoku/20181025/10134/(2023年4月4月4日)。5)您知道“老肉”和“腐烂的肉”之间的区别!Complesso.jp,于2020年11月9日出版,https://complesso.jp/15366/(浏览了2023年4月)。6)什么是成熟?- 发酵的差异以及衰老使成分更美味的原因。关于我们的日本食品的鲜味,于2020年12月1日出版,https://www.kobayashi-foods.co.jp/washoku-no-umami/jyukuseitoha#:text = 1(2023年4月4日)。7)有哪种类型的发酵食品?- 主要发酵食品的名单。日本食品的鲜味,日本美食的基础知识,于2022年6月22日出版,https://www.kobayashi-foods.co.jp/washoku-no-umami/hakkkou-table(浏览了2023年4月4日)。8)Jun Kobayashi,Yukiko Sumida,Keiichi Ikeda。(2022)氨基酸的替代功能及其对人类生理的影响。国际药房与药学研究杂志,25,184-191。9)Jun Kobayashi,Yukiko Sumida,Keiichi Ikeda。(2022)可以使食物美味的反应有害吗?国际药房与药学研究杂志,25,212-220。
在美国洛杉矶繁忙的长荣码头,Cavotec Specimas“拉动和存储”卷轴随处可见。它们安装在集装箱起重机上,拖曳巨大的电力电缆,并通过光纤供电和控制,确保电缆具有正确的张力。为了每年处理如此大量的集装箱,工作周期为 24 小时的设备必须具有高效率和低停机时间。在这个码头,您还可以找到 1100 米的 Panzerbelt 电缆保护系统,该系统目前在全球 300 多个港口中使用。请通过邮件或传真向我们询问 Cavotec Specimas 电动电缆卷轴和 Panzerbelt 系统如何帮助您的港口或码头提高盈利能力和效率。由于可靠性是一个关键因素,它由广泛的 Cavotec 服务网络提供支持,该网络也活跃在美国当地。 Cavotec 集团由位于加拿大、法国、德国、意大利、挪威和瑞典的七个制造“卓越中心”以及位于澳大利亚、中国、德国、瑞典和美国的五个本地制造单位组成。为了向客户提供产品分销和支持,Cavotec 拥有 22 家战略性销售和服务公司。
对数字设备的依赖日益增长,已经不再仅仅是为了方便,而是成为现代生活的一个基本组成部分。智能手机、社交媒体平台和互联技术的广泛应用创造了一个不断刺激和大量信息涌入的环境。越来越多的人担心这种无休止的数字互动会导致认知能力下降,通常被称为“脑腐烂”。虽然这个术语缺乏正式的科学定义,但它捕捉到了那些严重依赖技术的人所感受到的认知疲惫和精神压力。本文旨在将“脑腐烂”置于心理学和神经学背景中,研究其后果,并提出可能的解决方案。
摘要:植物暴露于包括病原体在内的各种压力源,需要特定的环境条件引起/诱导植物性疾病。这种现象称为“疾病三角”,直接与特定的植物病因相互作用有关。只有与易感植物品种相互作用的有毒病原体会在特定的环境条件下导致疾病。这似乎很难实现,但是软腐果杆菌科(SRP)是一组具有广泛宿主范围的致病细菌。此外,在农业中经常存在的问题(由此导致的缺氧)是这组病原体的青睐状况。供水本身是由于气体交换降低而引起的植物非生物应力的重要来源。因此,植物已经进化了一种基于乙烯的系统,用于低氧感测。植物反应通过荷尔蒙变化协调,这些变化诱导了对环境条件的代谢和生理调整。湿地物种,例如大米(Oryza sativa L.)和苦乐夜(Solanum dulcamara L.),已经开发了适应性,使它们能够承受较长的氧气可用性时期。马铃薯(茄索拉姆结核)虽然能够感知和对缺氧的反应,对这种环境压力很敏感。SRP利用了这种情况,该情况响应缺氧诱导毒力因子的产生,并使用环状二甘氨酸(C-DI-GMP)。为了实现该目标,我们可以寻找野土豆和其他茄种,以寻求抗水池的抗性机制。马铃薯块茎又减少了防御能力,以防止能量,以防止活性氧和酸化的负面影响,使它们容易发生软腐病疾病。为了减少由软腐病疾病引起的损失,我们需要敏感和可靠的方法来检测病原体,以隔离感染的植物材料。但是,由于SRP在环境中的高度流行,我们还需要创造出对疾病具有更具耐药性的新马铃薯品种。马铃薯耐药性也可以通过有益的微生物来帮助,这可以诱导植物的天然防御能力,但也可以浸水。然而,大多数已知的植物 - 借氧微生物患有缺氧,植物病原体可能胜过。因此,重要的是寻找可以承受缺氧或通过改善土壤结构来承受低氧或减轻其对植物的影响的微生物。因此,考虑到环境条件的影响,本综述旨在提出马铃薯对缺氧和SRP感染的反应以及预防软腐病疾病的未来前景的关键要素。
非固定专有通知书本文档受版权和其他相关权利的保护,本文档中包含的信息的实践或实施可能受到一项或多项专利或未决专利申请的保护。未经ARM的明确书面许可,任何方式都不得以任何形式复制。除非有明确的说明,否则没有明示或暗示的许可,或暗示任何知识产权。您对本文档中信息的访问是有条件的,您接受您不使用或允许其他人使用该信息以确定实施是否侵犯任何第三方专利的目的。提供了“原样”提供此文档。ARM不提供任何陈述,没有明示,隐含或法定的保证,包括但不限于适销性,令人满意的质量,不侵权或适合于文档的特定目的的隐含保证。为了避免疑问,ARM不对,也没有进行任何分析来识别或了解专利,版权,商业秘密或其他权利的范围和内容。本文档可能包括技术不准确或印刷错误。在法律不禁止的范围内,任何情况都不会对任何损害负责,包括不限制任何直接,间接,特殊,偶然,惩罚性,惩罚性,惩罚性或结果损害,无论造成责任理论,即使对本文档的任何使用,也都会造成任何责任理论,即使ARM已被告知ARM可能会造成此类损害的可能性。此文档仅由商业项目组成。您应负责确保本文件的任何用途,重复或披露完全符合任何相关的出口法律和法规,以确保不会直接或间接地出口本文件或其任何部分,以违反此类出口法。使用“合作伙伴”一词来参考ARM客户的使用,旨在创建或参考与任何其他公司的任何合作关系。手臂可以随时随时更改本文档。如果这些条款中包含的任何规定与任何单击或签署的书面协议的任何规定相冲突,则用ARM涵盖本文件的任何条款,则单击或签署的书面协议占上风,并取代了这些条款的冲突规定。为方便起见,本文档可以翻译成其他语言,并且您同意,如果本文档的英语版本与任何翻译之间存在任何冲突,则该协议的英文版本的条款将占上风。用®或™标记的ARM公司徽标和单词是美国和/或其他地方的ARM Limited(或其子公司)的注册商标或商标。保留所有权利。本文档中提到的其他品牌和名称可能是其各自所有者的商标。请遵循ARM的商标使用指南,网址为http://www.arm.com/company/policies/trademarks。版权所有©2024 ARM Limited(或其分支机构)。保留所有权利。手臂有限。公司02557590在英格兰注册。英格兰剑桥市CB1 9NJ 110 Fulbourn Road。
连续体(BICS)中的结合状态是零宽(有限的寿命),即使它们与连续的扩展状态共存,但仍在系统中仍然存在的特征模式。产生的高频共振可能在光子整合电路,过滤,传感和激光器中具有显着应用。在本文中,我们证明了基于光子三轴腔的简单设计可以同时显示Fabry-Pérot(FP)和Friedrich-Wintgen(FW)BICS,并且它们的出现非常依赖于将腔附着在外部介质上的方式。我们首先考虑一个对称腔,其中长度D 3的存根被两个长度D 2的存根包围,所有存根均由长度D 1的段隔开。当两个端口之间插入腔时,我们在理论上证明了在长度d 1,d 2 2和d 3之间的可辨式条件下,在实验上证明了FP类型的对称BIC(S-BIC)和抗对称BIC(AS-BIC)的存在。S-BIC和AS-BIC可能会彼此交叉,从而产生双重变性的BIC。通过打破腔体的对称性,AS-BICS和S-BIC可以融合在一起,并实现FW型BIC,其中一种共振保持为零,而另一个共振却宽阔。通过考虑另外的两个配置,其中三端腔与一个或两个端口仅在一个侧连接起来,可以在结构内部诱导其他BIC。通过略微使BIC条件略有失调,后者转变为电磁诱导的透明度 /反射或FANO共振。最后,可以设计这种三重速度腔,以实现某些频率的接近完美吸收。使用同轴电缆在辐射频域中通过实验确认了从绿色功能方法获得的所有分析结果。
蔓越莓水果腐烂(CFR)是一种主要的疾病复合体,显着影响蔓越莓作物,导致大量产量损失。在过去十年中,CFR越来越有问题,尤其是在高产和新品种中,据报道损失范围从50%到100%。此外,蔓越莓行业还面临着对使用广谱杀菌剂(例如Chlorothalonil和Mancozeb)的限制,因此需要探索替代管理策略。这项研究于2021年至2024年在马萨诸塞大学 - 阿默斯特蔓越莓站进行,评估了Frac组7、9和12的新型杀菌剂。单独测试并与硫代蛋白(FRAC 11)结合了活性成分 - 苯并叶二氟,pydi lumetofen,cyprodinil和流胞菌。这些杀菌剂在降低CFR发病率和提高产量方面的效率在蔓越莓品种“ Demoranville”,“ Ben Lear”和“ Stevens”和“ Stevens”上评估,并在Bloom早期和晚期阶段进行了应用。在2021、2023和2024中观察到果腐发生率和产量的显着差异。处理含有Pydi umetofen,pydi limetofen&fludioxonil和Benzovindi Floupyr的处理,当与硫代蛋白结合使用时,始终导致较低的腐烂率和较高的产率。含有cyprodinil&fludioxonil加上阿佐昔霉素的处理,仅在2021年进行了测试,也导致腐烂的发病率和较高的产率。这些发现突出了FRAC组7、9和12的新型杀菌剂的潜力,作为CFR管理的有效替代方法。他们的使用可以使CFR管理工具包多样化,减轻杀菌剂的耐药性并减少环境影响,从而解决了增加杀菌剂法规所带来的挑战。
和处理7,范围8,微波光子学9,双弯曲光谱学10和天文学光谱仪校准11。这些孤子作为Lugiato – Lefever方程的局部溶液12,13(LLE)出现,可以在具有高质量因素的谐振器中观察到。CSS的出现依赖于一侧异常的群体色散(GVD)和Kerr非线性之间的双重平衡,以及在另一侧的损耗和能量注入(通常是通过连续波(CW)激光泵)之间的双重平衡。由于它们的高质量因子和紧凑的设计(数百微米的空腔长度),微孔子在过去十年中引起了显着的注意力。De- spite these impressive performances, launching and collect- ing light in these resonators can be challenging, requiring ad- vanced fiber coupling devices such as a prism fiber taper 15 or advanced coupling methods for chip microresonators 16 , and while progresses on packaging are on going, it is still an ob- stacle for fiber applications.在谐振器中产生OFC的另一种方法是,在长度为117米的全纤维环腔中,其有效质量因子可以通过在腔体18中包括一个放大器来达到数百万。使用这些谐振器架构获得的光谱延伸到几个THZ上,几乎就像微孔子一样,但它们具有两个主要缺点。首先,线间距在MHz范围内,该范围限制了应用程序范围(主要在GHz范围14中),其次,它们不是Com-