• 基因编辑生物可以使废水处理更加节能、省时、省成本,并进一步降低未经处理的废水对环境造成污染和危害的风险。 • 细菌、白腐真菌和藻类是废水处理技术中基因编辑的有前途的生物,必须进一步了解它们的基因组、特性和行为。 • 围绕基因编辑的争议主要是由于缺乏对基因编辑的标准化共识,以及围绕该技术的丑闻和/或怀疑。 • 研究必须解决有关非预期脱靶基因编辑的不确定性,这将有助于澄清监管方法和安全评估程序。 • 在实施新的废水处理技术时,地方政府、联邦监管机构、受过培训的当地人员的协调和长期规划是核心。 • 进一步研究和实施废水处理中的基因编辑技术不应妨碍传统废水处理设施的建设。 • 一旦废水处理得到巩固并确定了实施和运营的能力,就应该在替代方案分析中考虑废水处理中的基因编辑技术。
FUSED 可持续能源发展融资公用事业 GFI 政府金融机构 GOP 菲律宾政府 IFC 国际金融公司 JV 合资企业 kW 千瓦 kWh 千瓦时 LCOE 平准化能源成本 LGU 地方政府单位 LTA 贷款技术顾问 MOE 日本环境部 MW 兆瓦 MWh 兆瓦时 NEA 国家电气化管理局 NGO 非政府组织 NPC-SPUG 国家电力公司 - 小型电力公用事业集团 NPP 新电力供应商 ODA 海外发展援助 OPEX 运营费用 PSA 电力供应协议 PSALM 电力行业资产负债管理公司 QTP 合格第三方 RE 可再生能源 REDCI 可再生能源开发商现金奖励 ROMELCO 朗布隆电力合作社 ROO 修复-拥有-运营 ROT 修复-运营-转让 RPS 可再生能源组合标准 SAGR 补贴核准发电率 SARR 补贴核准零售价 SBLC 备用信用证 TCGR 真实成本发电率 TWh 太瓦时 UCME 传教士电气化普遍收费 WB 世界银行 汇率 1 美元 = 50 菲律宾比索
摘要:我们开发了一种底物,该基材可以实现高度敏感和空间均匀的表面增强拉曼散射(SERS)。该基材包括密集的金纳米颗粒(D-Aunps)/二氧化钛/AU膜(D-ATA)。D-ATA底物显示了AUNP和Fabry-pé腐烂纳米腔的局部表面等离子体共振(LSPR)之间的模态超肌耦合。d-ATA表现出近场强度的显着增强,与D-Aunp/ Tio 2底物相比,晶体紫(CV)的SERS信号增加了78倍。重要的是,可以获得高灵敏度和空间均匀的信号强度,而无需精确控制纳米级AUNP的形状和排列,从而实现了定量的SERS测量。此外,在超低吸附条件下(0.6 r6g分子/AUNP)在该基材上对若丹明6G(R6G)的SER测量显示出3%以内信号强度的空间变化。这些发现表明,在模态超肌耦合下的SERS信号源自具有量子相干性的多个等离激元颗粒。关键字:局部表面等离子体共振,模态超技术耦合,表面增强的拉曼散射,量子相干性,自组装
Contributors to this Monograph: Thierry Advocat, Eugen Andreiadis, Catherine Andrieux-Martinet, Yves Barré, Catherine Beaucaire, Mehdi Ben Mosbah, Samuel Blanchard, Vincent Blet, Dominique Bois, Bernard Bonin, Lionel Boucher, Isabelle Brésard, Jean-Charles Broudic, Éric Cantrel, Caroline Chabal, Christophe Chagnot, Frédéric Charton, Jérôme Comte, Cheikh M. Diop, Didier Dubot, Jérôme Ducos, Sylvain Faure, Cécile Ferry, Muriel Firon, Fabien Frizon, Christine Georges, Christophe Girold, Philippe Girones, Agnès Grandjean, Joël Guidez, Audrey Hertz, Éric Kraus, Émilie Lafond, David Lambertin, Frédéric Laye, Michaël Lecomte, Florent Lemont, Célia Lepeytre, Antoine Leybros, Daniel Lʼhermite, Karine Liger、Charly Mahé、Clarisse Mariet、Cyril Moitrier、Gilles Moutiers、Jean-Guy Nokhamzon、Odile Palut-Laurent、Luc Paradis、Bertrand Pérot、Jean-Pierre Perves、Laurence Piketty、Christophe Poinssot、Luc Schrive、Roger Serrano、Yves Soulabaille、Frédéric Tournebize、Aimé Tsilanizara、Hubert-Alexandre Turc、Julien Venara、Dominique You
低维ZnO的材料在过去的几十年中引起了很多关注,因为它们在光电设备中的独特电子和光学支持以及潜在的应用。在本教程中,我们将根据激子和相关的激光过程介绍ZnO薄膜和微型/纳米结构的过去和最新发展。首先,我们简要概述了ZnO的结构和频带特性以及线性光学和激子特性。第二,我们引入了一种以各种形式的ZnO激光的反馈机制,从纳米颗粒到纳米线,纳米丝和薄膜。至于反馈机制,对随机激光,Fabry - PérotLasing和耳语画廊模式激光进行了详细的描述。第三,我们讨论了可能的增益机制,即ZnO中的含量增益和电子血浆(EHP)增益。特殊的兴趣也用于Mott载体密度,这是区分激光和EHP对激光贡献的关键参数。最后,引入了基于ZnO微腔的激子激光的最新发展。
Supermicro B13DET 支持双第四代英特尔® 至强® 可扩展处理器(插槽 E1 LGA 4677-1),具有三个 UPI(最高 16GT/s)和高达 350W 的 TDP(热设计功率)。B13DET 采用英特尔 C741 芯片组构建,支持 4TB(最高)3DS RDIMM/RDIMM DDR5 ECC 内存,在 16 个 DIMM 插槽中速度高达 4800MT/s(下面的注释 1)。这款主板具有出色的 I/O 可扩展性和灵活性,包括两个支持 SATA 6G/NVMe 的 HDD 连接器、一个支持 PCIe 5.0 的 M.2 连接器、两个支持子转接卡的夹层插槽、一个支持 25GbE 以太网 LAN 的中板,以及来自 PCH 的用于支持 SATA 6.0 的额外 SATA 连接器。它还提供最先进的数据保护,支持硬件 RoT(信任根)和 TPM(可信平台模块)(见下文注释 2)。B13DET 针对 4U/8U SuperBlade 系统进行了优化,具有高密度和高速输入/输出能力。它是高性能计算 (HPC)、云计算、财务建模、企业应用程序、具有数据密度应用程序的科学和工程计算的理想选择。请注意,此主板仅供专业技术人员安装和维修。有关处理器/内存更新,请参阅我们的网站 http://www.supermicro.com/products/。
本专着的贡献者:Thierry Advocat、Eugen Andreadis、Catherine Andrieux-Martinet、Yves Barré、Catherine Beaucaire、Mehdi Ben Mosbah、Samuel Blanchard、Vincent Blet、Dominique Bois、Bernard Bonin、Lionel Boucher、Isabelle Brésard、Jean-Charles布劳迪克、埃里克·坎特雷尔、卡罗琳·夏巴尔、克里斯托夫·查尼、弗雷德里克·查顿、杰罗姆·孔德、 Cheikh M. Diop、Didier Dubot、Jérôme Ducos、Sylvain Faure、Cécile Ferry、Muriel Firon、Fabien Frizon、Christine Georges、Christophe Girold、Philippe Girones、Agnès Grandjean、Joël Guidez、Audrey Hertz、Éric Kraus、Emilie Lafond、David Lambertin、弗雷德里克·莱耶、迈克尔·勒孔特、弗洛朗·莱蒙特、西莉亚·勒佩特、安托万Leybros、Daniel L'hermite、Karine Liger、Charly Mahé、Clarisse Mariet、Cyril Moitrier、Gilles Moutiers、Jean-Guy Nokhamzon、Odile Palut-Laurent、Luc Paradis、Bertrand Pérot、Jean-Pierre Perves、Laurence Piketty、Christophe Poinssot、Luc Schrive、罗杰·塞拉诺、伊夫·苏拉巴耶、弗雷德里克·图尔内比兹、艾梅Tsilanizara、Hubert-Alexandre Turc、Julien Venara、Dominique You
Supermicro B13DET 支持双第四代 Intel® Xeon® 可扩展处理器(插槽 E1 LGA 4677-1),具有三个 UPI(最高 16GT/s)和高达 350W 的 TDP(热设计功率)。B13DET 采用 Intel C741 芯片组构建,支持 4TB(最高)3DS RDIMM/RDIMM DDR5 ECC 内存,在 16 个 DIMM 插槽中速度高达 4800MT/s(见下文注释 1)。该主板具有出色的 I/O 可扩展性和灵活性,包括两个支持 SATA 6G/NVMe 的 HDD 连接器、一个支持 PCIe 5.0 的 M.2 连接器、两个支持子转接卡的夹层插槽、一个支持 25GbE 以太网 LAN 的中板,以及一个来自 PCH 的用于支持 SATA 6.0 的附加 SATA 连接器。它还提供最先进的数据保护,支持硬件 RoT(信任根)和 TPM(可信平台模块)(下面的注释 2)。B13DET 针对具有高密度和高速输入/输出能力的 4U/8U SuperBlade 系统进行了优化。它是高性能计算 (HPC)、云计算、财务建模、企业应用程序、具有数据密度应用程序的科学和工程计算的理想选择。请注意,此主板仅供专业技术人员安装和维修。有关处理器/内存更新,请参阅我们的网站 http://www.supermicro.com/products/。
() 200 Sony Elec1rooc• Ire A!ncj"lS reser.1?<1 ~" wt"Ole 或"part "' tt \他 VA!-0 标志。 \他 5ony 标志。 ~10\00Sl'orer 。 Plctl.reT<>t。 内存 StJCJ< ono IU NK ere • "Odem Co crd ~ cre rf9stered tnxlem:lrl Oiz dektes rriCrtl!lnXeSsorrterrd docl l>JI 产品 y,1!hcn lUNK 连接器可能会相互腐蚀 屏幕图像已调整。\他 VA!-0 标志。\他 5ony 标志。~10\00Sl'orer 。Plctl.reT<>t。内存 StJCJ< ono IU NK ere • "Odem Co crd ~ cre rf9stered tnxlem:lrl Oiz dektes rriCrtl!lnXeSsorrterrd docl l>JI 产品 y,1!hcn lUNK 连接器可能会相互腐蚀 屏幕图像已调整。Co crd ~ cre rf9stered tnxlem:lrl Oiz dektes rriCrtl!lnXeSsorrterrd docl l>JI 产品 y,1!hcn lUNK 连接器可能会相互腐蚀 屏幕图像已调整。crd ~ cre rf9stered tnxlem:lrl Oiz dektes rriCrtl!lnXeSsorrterrd docl l>JI 产品 y,1!hcn lUNK 连接器可能会相互腐蚀 屏幕图像已调整。Oiz dektes rriCrtl!lnXeSsorrterrd docl l>JI 产品 y,1!hcn lUNK 连接器可能会相互腐蚀 屏幕图像已调整。l>JI 产品 y,1!hcn lUNK 连接器可能会相互腐蚀 屏幕图像已调整。屏幕图像已调整。
背景:马铃薯种植在世界主要农作物中排名,但容易受到众多疾病的影响。将草甘膦抗性基因的整合到马铃薯植物中,可以直接应用草甘膦,从而简化杂草和疾病的管理。这项创新减少了对复杂控制方法的需求。此外,还采用了各种生物技术策略来应对马铃薯种植中的疾病挑战。目的:通过农杆菌介导的转化方法制定了有效的方案,该方法具有质粒,P485,该方法具有来自细菌种类dickeya dadantii的ARO A基因,以提高对马铃薯细菌软性腐烂疾病的耐药性。这项研究旨在研究草甘膦施用与马铃薯对两种影响植物的细菌病原体的抗性之间的关系。材料S和方法:将草甘膦的最佳浓度(1.8 mg.l -1)应用于转基因马铃薯品种。奥德赛品种的叶子表现出对两种致病性菌株的抗性,即胸骨杆菌21a和D. dadantii Ena49。聚合酶链反应(PCR)和逆转录PCR(RT-PCR)验证证明了马铃薯基因组中ARO A基因的成功整合和异源表达。此外,转录分析揭示了与马铃薯相关的发病机理相关基因和基因的表达