I. 简介 许多研究人员已经基于多孔弹性构建了脑积水的计算理论。此类模型将有助于更好地理解问题,从而提供更好的治疗方法。此类模型还忽略了分流术的间歇性影响,而分流术是治疗脑积水最常用的方法。我们使用弹性和流体力学来创建人脑和脑室系统的数学模型。我们的模型通过考虑跨导水管的流动并包括边界约束来扩展以前的工作。这将为疾病的边界和改善创建一个定量模型。我们开发并解决了该模型的控制方程和边界条件以及有意义的临床发现。我们的模型通过将导水管流与边界约束结合起来,扩展了早期对脑积水的研究。脑脊液沿着脊髓周围的蛛网膜下腔向下流动,然后进入颅脑蛛网膜下腔,然而,物理定律很难解释这种流动是如何持续的。采用体内刺激的数学方法来研究脉动血液、脑和脑脊液的动态相互作用 1 。本文介绍的模拟是为患有脑脊液生理病理疾病脑积水的个体生成的 2 。研究特发性脑积水化学浓度不对称循环的后脑室通透性 3 。使用基本的几何模型,当前的研究提出了一种全新的脑积水多物理扩散过程方法,并作为更复杂的几何模拟的标准 4 。研究了脑脊液在心血管和蛛网膜下腔的循环以及脑脊液渗入多孔脑实质的问题。开发了复杂大脑几何形状的边界条件 5 。将标准受试者的研究信息与代表颅内动力学的实际计算模型进行了比较。该模型利用特定于受试者的磁共振 (MR) 图像和物理边界条件作为输入,可重现脉动的脑脊液循环并模拟颅内压力和流速 6 。该数值模型用于探索横截面几何形状和脊髓运动如何影响非稳定速度、剪应力和压力梯度场 7 。该系统分为五个子模型:动脉系统血液、静脉系统血液、心室脑脊液、颅内蛛网膜下腔和脊髓出血腔。阻力和顺应性将这些子模型连接起来。构建的模型用于模拟七个健康个体中发现的关键功能特征,例如动脉、静脉和脑脊液流量分布(幅度和相移) 8 。此前,利用时间分辨三维磁共振速度映射研究人体血管系统中健康和异常的血流模式。利用这种方法研究了 40 名健康志愿者 9 的脑室系统中脑脊液流量的时间和空间变化。这些颗粒中的脑脊液和血液之间的屏障很小,使脑脊液能够流入循环并被吸收。与脑脊液的产生相反,消耗是压力-
R. V. Upadhyay Dean博士,应用科学学院,Amit Ganatra Dean博士,技术与工程学院,Devang Patel Advance Technology and Research ant Research ant Research Atul Patel Dean博士,计算机科学学院,Chandaben Mohanbhai Patel Institution D. D. D. D. D. D. D. D. D. D. D. D. D. D. D. D. D. Indukaka Ipcowala研究校长M. Balaganapathy Dean研究所校长Dean,医学科学学院校长,Ashok和Rita Patel Pater Physiotherapy研究所Manan Raval博士Manan Raval博士校长,Ramanbhai Patel Patel College,Ramanbhai Patel College,Ramanbhai Parter dean院长Charotar辅助科学研究所帕特尔校长Kamal Chakravarti Head,PRI。B. I. Patel人力资源发展中心Devang Joshi Registrar博士,Charusat Bhaskar Pandya博士,人文与社会科学副教授Indukaka Indukaka Indukaka Ipcowala管理学院
摘要:靶向蛋白质降解的领域呈指数增长。然而,对提供机械见解的药代动力学/药效学模型的需求未满足,同时在药物发现环境中实际上也很有用。因此,我们已经开发了一个全面的建模框架,可以应用于常规项目的实验数据,到:(1)基于准确的降解指标评估Protac,(2)指导最关键参数的化合物优化,(3)将降解降解到下游药物效应。所提出的框架包含了许多第一个特征:(1)一种机械模型,可以在Protac浓度降解中效应钩子效应,(2)(2)量化靶占用作用在Protac动作机制中的作用和(3)靶向降解和靶标的proticat效应的效应的靶标在protak protica的作用机制中的作用和靶标的proticat效应的效应。为了说明适用性并建立信心,我们采用了这三种模型来分析来自不同项目和目标的各种化合物的示例性数据。提出的框架使研究人员可以量身定制其实验性工作,并更好地了解其结果,最终导致更成功的Protac发现。这里的重点在于体外药理学实验,但还讨论了体内研究的关键含义。
临床研究涉及 2,000 多名受试者,其中 ROTARIX 和口服脊髓灰质炎疫苗 (OPV) 间隔两周接种。对 ROTARIX 和 OPV 的免疫反应不受影响。在三项涉及约 1,200 名受试者的免疫原性研究中,ROTARIX 与 OPV 同时接种。对 OPV 的免疫反应以及第二剂后对 ROTARIX 的反应均不受影响。如果符合当地建议,ROTARIX 可以与 OPV 同时接种。如果没有当地建议,应在 OPV 和 ROTARIX 的接种间隔两周。
使用105,000 Candela获取极端光束!多燃料Protac®RailMount HP-X Pro闪耀着明亮,穿透性的烟雾,雾气和光子屏障。其Jack-Cap®尾部盖开关提供操作开关冗余,均采用按钮操作或远程压力开关操作。
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
蛋白水解靶向嵌合体 (PROTAC) 是一种很有前途的治疗方式,在癌症治疗中引起了广泛关注。利用 PROTAC 技术,我们使用 Cereblon (CRBN) 和 Von Hippel – Lindau (VHL) E3 配体合成了新型结构修饰的基于 paullone 的 PROTAC。与标准阿霉素相比,PROTAC 23a 显著抑制了 MCF-7 乳腺癌细胞 (IC 50 = 0.10 µ M) 和 A549 肺癌细胞 (IC 50 = 0.12 µ M) 的生长。通过 MCF-7 细胞中的免疫印迹试验评估了这些新型 PROTAC 的降解效率。蛋白质印迹结果显示,PROTAC 23a 在浓度范围为 5.5 至 16 µ M 时降解细胞周期蛋白依赖性激酶 1 (CDK1),从而产生抗癌作用。分子对接用于确认活性 PROTAC 23a 对 CDK1 结合位点的亲和力。我们的研究结果表明了基于 paullone 的 PROTAC 作为 CDK1 降解剂的重要性,可能利用其来识别更有效的乳腺癌和肺癌临床治疗候选药物。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2024年12月29日发布。 https://doi.org/10.1101/2024.12.28.630572 doi:Biorxiv Preprint
原理:蛋白水解靶向嵌合体 (PROTAC) 是一种双功能化合物,因其在靶向蛋白质降解 (TPD) 中的作用而受到广泛研究。降解已验证或不可成药的靶标的能力使 PROTAC 在癌症治疗中具有显着的效力。然而,PROTAC 的临床应用受到其体内效力差和药代动力学特性不利的限制。方法:在本研究中,通过将 BRD4 降解 PROTAC 与 ROR1(受体酪氨酸激酶样孤儿受体 1)抗体结合,开发了一种新型降解剂-抗体偶联物 (DAC)。评估了 ROR1 DAC 的体外亲和力、内化功效、降解和细胞毒活性。在小鼠模型中评估了 ROR1 DAC 的药代动力学、抗肿瘤活性和急性毒性。通过RNA测序(RNA-seq)和免疫组织化学方法分析ROR1 DAC与抗鼠程序性细胞死亡蛋白1(αmPD1)mAb联合治疗的疗效。
