在继续之前,重要的是将 UUV 置于无人系统的更广泛背景下考虑。无人驾驶飞行器现在在许多军事行动中很常见,既可用作武器(巡航导弹),又可用作侦察平台(捕食者无人机)。无人驾驶地面车辆正在开发中,用于高风险行动,例如雷场作业和炸弹处理,以及监视。在海洋环境中,已经开发了各种无人系统,包括:拖曳系统;硬系绳设备,例如遥控车辆 (ROV);不能完全潜入水中的系统,例如无人水面车辆或半潜式车辆;以及海底爬行器。其中许多系统或车辆已经使用多年(用于深水搜索和打捞的 ROV),或处于开发的后期阶段(海军的远程扫雷系统 - RMS)。
无线电波在水中传播距离很短。水下机器人平台(如 AUV)可以使用声学通信来确定它们的位置并告诉船只它们的情况。然而,虽然声音可以传播很长的距离(最远可达 0.6 英里),但通常仍然太慢,无法将视频信号从平台传输到船只或岸上。为了解决这个问题,AUV 需要提前编程,其机载计算机会指导它们完成任务。一旦完成任务,它们就会浮出水面,要么被船只打捞上来下载数据,要么连接到卫星上将数据发送到岸上。ROV 通过将船只与机器人连接起来的长光纤电缆不断与船只通信。目前,大多数深海 ROV 的下潜深度不超过 6,000 米(3.7 英里)。电缆设计和其他因素使得下潜到更深的水下更加困难且成本更高。为了下潜到更深的水下,下一代工程师将需要开发新的电缆技术
引言深海环境是鲜为人知的,更难研究地球上的生态系统之一,与地球深海相比,火星表面的地图更好(1)。尽管人类已经能够进入数千年的各种陆地生态系统,但自从人类具有探索和研究海洋的能力以来,已经几百年了。最现代的技术进步,可促进与深海生活相互作用的互动,例如配备了钛机操纵器的远程操作的车辆(ROV),是由工业部门和与国防相关的工业推动的(2)。然而,近年来,软机器人技术等领域的进步将更多地集中在与海洋生物学家合作并为益处合作而开发的脆弱海洋生物操纵上(3-8)。与先进的水下想象技术相结合(9),它扩大了生物学询问,只有在受控的实验室环境中才有可能对深海的精致动物进行。在这项研究中,我们结合了机器人的跨学科协同作用,深海标本封装,定量的三维(3D)成像和分子生物学,以收集可用于识别,描述和进一步了解深海组织的丰富数据。通过结合水下成像和移动机器人平台,我们解锁了新机制,以实现深海海洋生物群的定量观察(10)。这些探险中的第一个我们报告了一个工作流程和技术套件,其中包括结构化成像,封装,原位保存和基因组测序,以提供有关有机体系统的大量信息。该项目涉及两次研究探险队在Schmidt海洋研究所的R/V Falkor上,以及ROV Subastian,这是一个4500 m评级的工作级ROV系统。
在现场安装期间,必须将转塔拉入配合锥体。船只通过四艘拖船进行动态定位,并使用拖船管理系统。拉入由安装在 Alvheim 船上的绞盘执行,绳索穿过浮标。当船只因波浪和拖船定位等而移动时,重要的是实时监控转塔顶部以决定何时可以拉入。在规划阶段,人们对如此靠近 FPSO 船体的超短基线 (USBL) 跟踪系统的稳健性表示担忧。对 USBL 系统性能的担忧是由于浮标顶部 (±6m) 与船只船体非常接近。这可能导致船体反射产生杂散信号。此外,USBL 收发器位于 FPSO 附近的遥控机器人 (ROV) 上。因此,我们决定研究其他方法,以定位浮标顶部相对于配合锥体的位置,以防 USBL 不准确或 ROV 与 FPSO 上的定位团队之间的链接失败。图 2 显示了 Alvheim FPSO 和浮标,其转塔位于配合锥体内。
在核反应堆的 50 多年工作中,由于辐射危害,工厂的关键区域无法进入,我们开发了全面的远程检查和远程工程能力。我们对标准方法不起作用的工厂部分进行维护和检查。我们根据需要设计和制造工具,包括定制的遥控机器人 (ROV)。
在现场安装期间,必须将转塔拉入配合锥体。船只通过四艘拖船进行动态定位,并使用拖船管理系统进行定位。拉入由安装在 Alvheim 船上的绞盘执行,绳索穿过浮标。当船只因波浪和拖船定位等原因而移动时,重要的是实时监控转塔顶部以决定何时可以拉入。在规划阶段,人们对如此靠近 FPSO 船体的超短基线 (USBL) 跟踪系统的稳健性表示担忧。对 USBL 系统性能的担忧是由于浮标顶部 (±6m) 与船体非常接近。这可能导致船体反射产生杂散信号。此外,USBL 收发器位于 FPSO 附近的遥控车辆 (ROV) 上。因此,我们决定研究其他方法来定位浮标顶部相对于配合锥的位置,以防 USBL 不准确或 ROV 与 FPSO 上的定位团队之间的连接失败。图 2 显示了 Alvheim FPSO 和浮标,其中转塔位于配合锥内。
本文调查了水下考古映射的微级远程操作车辆(ROV)(通常称为水下无人机)的变革性影响。随着无人管理的水下车辆(UUV)技术的进步导致功能增加和成本降低,这些紧凑型和用户友好的无人机正在使水下考古遗址更加易于使用,从而减少了对人类潜水的需求。该论文首先强调了ROV的优势,包括其可移植性,可操作性以及对实时数据评估进行半自主映射的能力,从而增强了决策制定并最大程度地减少了对现场重新审视的需求。第二,它提出了希腊Phournoi群岛的两项案例研究,证明了在摄影映射中有效地使用了水下无人机在摄影映射中,对已故的Amphora货物沉船以及对历史上重要的锚固地点进行了大规模的测量。这些发现强调了这项技术彻底改变水下考古文献的潜力,类似于陆地文化遗产映射如何从空中无人机摄影测量中受益。
1) 如果您选择使用高分辨率调查数据进行评估,请根据《给承租人和经营人的通知》(NTL)第 2005-G07 号,使用足以提供 100% 侧扫声纳覆盖海底的线间距,在所有计划进行海底扰动活动的区域获取数据。例如,如果您计划的作业水深超过 400 米,并且您决定将井位或相关锚点移动最多 500 英尺(如 NTL 第 2009-G27 号所述),请确保调查覆盖的区域足够大,以解释这种变化。此外,可以使用之前收集的侧扫声纳数据,前提是它是使用 DGPS 定位收集的,并且具有足够的分辨率和质量,可供合格的海洋考古学家准确解释。如果使用多个数据集,则必须将所有数据合成为综合考古评估。 2) 如果您选择使用 ROV 调查进行评估,ROV 应配备声学定位和扇区扫描声纳。视频、声纳和导航都应录制到 DVD 中,以供查看。如果您打算在获得场地许可认证后立即开展已获批准的活动,则专业的海洋考古学家应在调查进行过程中观察调查情况,观察方式可以是亲自到场或通过远程互联网馈送,该馈送的质量和分辨率足以让考古学家进行分析。此外,考古学家必须能够与 ROV 驾驶员实时通信,以指导调查。如果发生视频或通信中断,则应在视频或通信恢复时从中断发生的位置继续调查。如果考古学家未能亲自到场从 ROV 控制室观察调查,他/她应在考古评估报告中通过审查记录的导航、声纳和视频文件证明调查已完成,项目区域得到充分覆盖,潜在目标未被忽略。3) 如果您提议拆除的结构位于之前未调查过的区块内,或者您的调查未涵盖拟议行动的所有影响,例如场地清理拖网、驳船锚、锚链、钢丝绳、电缆等,请使用常规调查仪器(即磁力计、侧扫声纳、海底剖面仪,数字记录并绑定到 DGPS 或其他相称的导航系统)在足够大的区域进行调查,以涵盖所有拟议的海底扰动活动。在水深超过 200 米(656 英尺)的地方,不需要使用磁力计。如果无法使用常规仪器,可以使用自主水下航行器 (AUV) 或深水拖曳系统获取这些数据。NTL 2005-GO7 提供了有关特定仪器的指导(http://www.boem.gov/Regulations/Notices-To-Lessees/2005/05-G07.aspx)。