2020年7月24日,杰夫·斯图尔特先生,工程和电源拉斐特实用程序系统1314沃克路拉斐特,路易斯安那州70506 RE:综合资源计划亲爱的斯图尔特先生:伯恩斯和麦克唐纳工程公司(Burns&McDonnell Engineering Co.综合资源工厂(“ IRP”)。Burns&McDonnell很高兴提交我们的报告,详细介绍了代表LUS进行的IRP的结果。基于本文包含的分析LUS的系统以及Burns&McDonnell在电力行业的经验,已经得出以下结论:1。lus应该继续维持一个多样化的发电组合,该发电组合包括可调度和可再生资源。可调度的资源,例如天然气发电厂,将能够为可靠性和资源充足性提供所需的能力,同时纳入可再生能源的低成本能源。2。lus应该继续采购短期容量资源(因为短期市场的容量仍然是低成本)以及中期和长期资源,例如电力购买协议和拥有的资源。3。在Rodemacher Power Station 2(“ RPS2”)的长期燃煤运营似乎不经济,这是由于与环境法规以及持续的运营和维护成本相关的重大投资要求,此外还没有市场价格。该特定评估的重点是确定是否在RPS2处继续燃煤操作,但不能专门确定其潜在替代。lus应该在2027年底之前考虑退休燃煤发电,以避免在此之后继续燃煤运营所需的投资。4。退休燃煤发电的决定要求联合所有者,个人管理机构,环境,州监管和误报批准。lus应该与其他共同所有人合作,当退休或转换为天然气运营时,是否应完全从电力发电中退休RPS2。5。如果RPS2从一代中退休,则LUS应该考虑使用一个简单的循环燃气轮机来替代RPS2。lus拥有现有的Louis“ Doc” Bonin发电站,可能适合重新利用作为简单的周期设施。lus应该考虑为现有设施开始工程研究,以评估重新利用该站点的可行性。
图 1:长读 Ribo-STAMP 的实验和计算方法。(A)LR-Ribo-STAMP 实验系统概览。RPS2 与 APOBEC1 融合,以诱导核糖体-RNA 相互作用位点附近的胞嘧啶到尿嘧啶核苷酸编辑。编辑越多表示翻译越高,编辑越少表示翻译越低。(B)LR-Ribo-STAMP 计算流程概览。输入是未对齐的长读,经过对齐、读过滤、编辑检测、编辑过滤和编辑量化。编辑后的位点输出为 BED 文件。(C)编辑过滤。通过过滤常见位点和注释的 SNP,从长读 APOBEC1 专用(绿色)信号中概述编辑过滤和描绘 LR-Ribo-STAMP(金色),表示为编辑分数(编辑读/总读数)与编辑位点覆盖率之间的关系。灰色部分中的已编辑站点表示过滤掉的读取数少于 20 的站点。
摘要。白粉病(Blumeria graminis f. sp. Tritici,(Bgt))是一种世界范围内重要的小麦(Triticum aestivum)真菌叶面病害,造成严重的产量损失。因此,开发抗性基因和解剖抗性机制将有利于小麦育种。Bgt 抗性基因 PmAS846 被转移到来自 Triticum dicoccoides 的六倍体小麦品系 N9134 中,它仍然是最有效的抗性基因之一。在这里,通过 RNA 测序,我们与模拟感染植物相比,在小麦 -Bgt 相互作用中使用成对比较和加权基因共表达网络分析鉴定了三个共表达的基因模块。应激特异性模块的中心基因显著富集在剪接体、吞噬体、mRNA 监视途径、内质网中的蛋白质加工和内吞作用中。选取位于5BL染色体上的诱导模块基因构建蛋白质相互作用网络,预测其中关键的枢纽节点蛋白包括Hsp70、DEAD/DEAH盒RNA解旋酶PRH75、延长因子EF-2、细胞分裂周期5、ARF鸟嘌呤核苷酸交换因子GNOM-like、蛋白磷酸酶2C 70蛋白,并与RLP37、RPP13、RPS2类似物等多个抗病蛋白发生相互作用。基因本体富集结果表明,小麦在Bgt胁迫下可以通过mRNA转录机制激活结合功能基因。其中,GNOM-like、PP2C isoform X1和跨膜9超家族成员9被定位到距离为4.8 Mb的PmAS846基因片段上。该研究为深入理解抗病机制及克隆抗病基因PmAS846奠定了基础。
