飞机或旋翼机燃气涡轮发动机某些关键子系统的电气化为下一代航空发动机提供了许多宝贵的优势,如减轻重量、降低能耗、提高子系统和整个推进系统的效率、加快响应速度、更快更容易维修、比液压和气动系统可靠性更高、减少油耗、提高有效载荷能力、降低总生命周期成本、提高可维护性、发动机维护和操作更清洁、更好地分配机载资源、为维护和客户提供实时数据、提高健康监测能力等。发动机子系统的电气化还可以开发新的创新型飞机和发动机配置,例如,去除笨重而复杂的(发动机和/或飞机)附件驱动变速箱(ADG)或为 IGV、推力反向器门或任何其他可变几何部件引入和使用更多的 EMA(机电执行器)。在发动机和子系统(如润滑系统)中集成更多更智能的传感器是另一个明显的优势(例如油渣监测传感器或油箱液位传感器)。还将讨论更多电气子系统的集成,并了解与电源和热管理相关的固有风险(参见 AVT-RTG-333“将推进、电源和热子系统模型集成到飞行器概念设计中”)。因此,建议对涡扇和涡轴子系统电气化的当前趋势进行分析,并组织关于此主题的 RSM,目的是将 AVT 小组定位在此技术发展的前沿。背景
摘要融合沉积建模(FDM)是一种增材制造(AM),由于其在设计,有效使用材料和负担得起的成本方面,它引起了研究人员和行业的浓厚兴趣。在本文中,主要目的是研究FDM过程参数对挠曲性能的影响以及由聚对苯二甲酸乙二醇乙二醇(PETG)材料制成的最终部分的准确性,由于其强度和易用性,该材料广泛用于3D打印。采用了基于盒子– Behnken设计的响应表面方法(RSM)方法,其中包含三个关键过程参数:填充线距离,壁线计数和构建板温度。对数据的分析表明,所有三个参数都影响了印刷部分的固有特征,包括印刷部分的机械和尺寸特征。构建板温度被确定为最重要的参数,占印刷样品弯曲强度变化的53%,在样品的尺寸准确性方面偏离39.7%,如方差分析(ANOVA)所示。模型的预测值与相应的实验结果之间的比较表明,开发模型的适用性很高。在这项研究中观察到的最大百分比误差为3.4%,维度准确性为7.5%,建立了优化技术的功效。这些结果对于理解过程参数对材料响应的影响很有意义,并提供了一种系统的方法来开发具有改进的机械特性和几何维度的结构增强的PETG部分。
摘要 产油真菌的微生物脂质生产为生产多不饱和脂肪酸 (PUFA) 提供了潜在的来源,PUFA 是一种有价值的营养和药物应用化合物。培养条件的优化对于提高微生物脂质产量至关重要。本研究旨在利用当地产油霉菌 Cunninghamella sp 来改善脂质合成。常规研究了碳源、氮源、pH 值和培养时间等几个因素对 Cunninghamella sp 脂质积累的影响(每次一个变量)。结果表明,最有效的碳源是葡萄糖,硝酸钠是脂质合成的最佳氮源。最佳 pH 值和培养时间分别为 6.0 和 5 天。此外,使用响应面法 (RSM) 进一步优化葡萄糖浓度、硝酸钠和 pH 值以最大限度提高脂质产量。应用中心复合设计 (CCD),并使用具有二次项的多项式回归模型通过方差分析 (ANOVA) 估计实验数据。 RSM-CCD 优化结果表明,葡萄糖和硝酸钠的最佳浓度分别为 38.28 g/L 葡萄糖、0.48 g/L,pH 值为 5.79,脂质积累率为 25.4% (w/w)。二次模型表明,pH 是小克汉霉属 (Cunninghamella sp.) 脂质合成中影响最大的因素,小克汉霉属是一种具有高效脂质积累潜力的当地分离物。关键词:小克汉霉属;多不饱和脂肪酸;微生物脂质;优化;响应面法。
近年来,由于环境意识,天然纤维及其复合材料吸引了研究人员。必须识别新的纤维素纤维以进行潜在的聚合物增强。在这项研究的第一步中,从阿尔及利亚贝贾亚市山区收集的龙舌兰植物(AALLF)的叶片中提取了新的生态友好纤维素纤维,已被确定为生物 - 复合物的潜在增强材料。通过傅立叶变换红外(FTIR)光谱,Thermos Gravimetric Analysis(TGA/DTG)分析了提取的未处理和碱处理的AALLF的化学,热稳定性和机械礼节,分析了差异扫描(TGA/DTG),差异扫描卡路里量热量(DSC)和单个光纤纤维测试。在FTIR分析中,我们可以观察到在治疗的各个时间的化学处理对峰位置和强度的影响很小。热力计(TGA/DTG)和差异扫描量热法(DSC)分析有助于预测未经处理的AALLF的热行为,并建议热稳定性直至256°C,显而易见的激活能为6.14 J/g。拉伸强度,失败时的应变和Young的模量分别从单个未处理的纤维拉伸试验确定为196±41 MPa,41.45±5.98%和2756±517 MPa。其次,研究了研究纤维分数(x 1),NaOH浓度(x 2),树脂类型(x 3)和治疗时间(x 4)对聚合物生物复合材料的拉伸和弯曲性能的影响。然后使用响应表面方法(RSM)开发了生物复合材料的机械性能的数学模型。
摘要:本文报告了具有正方形和圆形冷却通道的微通道热交换器的三维数值优化的结果。优化的目的是最大化全局热电导或最大程度地减少全局热电阻。响应表面优化方法(RSM)用于数值优化。在单位细胞微通道的底部表面施加了高密度热通量(2.5×10 6𝑊/𝑚2),并使用ANSYS Fluent Commercial软件包进行了数值模拟。微通道的元素体积和轴向长度𝑁= 10 r均固定,而宽度则是免费的。冷却技术采用单相水,该水通过矩形块微通道散热器流动以在强制对流层流方向上去除微通道底部的热量。在微通道轴向长度上泵送的流体的速度为400≤𝑅𝑒≤500的范围。有限体积方法(FVM)用于描述用于求解一系列管理方程的计算域和计算流体动力学(CFD)代码。研究并报告了水流数量和雷诺数对峰值壁温度和最小温度的影响。数值结果表明,具有方形冷却通道的微通道比具有圆形构型的微量散热器具有最大最大的全局热电导率。数值研究的结果与开放文献中的内容一致。关键字:正方形配置,圆形配置,微散热器,数值优化,导热率[接收到2022年8月1日;修订于2022年10月8日;被接受的2022年11月6日]印刷ISSN:0189-9546 |在线ISSN:2437-2110
陶瓷/聚合物纳米复合材料因具有设计独特性和性能组合而受到广泛关注,据报道是传统复合材料中没有的 21 世纪材料。在这项工作中,我们尝试研究、开发和改进设计和制造的陶瓷/聚合物生物复合材料的生物力学,用于在复杂骨折和骨疾病的情况下修复和替换人体天然骨,方法是将纳米填料陶瓷颗粒添加到聚合物基质纳米复合材料 (PMNC) 中,以制造混合二氧化钛和氧化钇稳定的氧化锆增强高密度聚乙烯 (HDPE) 基质生物复合材料。使用热压技术在不同压缩压力 (30、60 和 90 MPa) 和复合温度 (180、190 和 200 °C) 下研究了这些生物活性复合材料。 SOLIDWORKS 17.0 和有限元 ANSYS 15.7 软件程序用于模拟、建模和分析能够承受最高应力和应变的股骨生物力学。响应面法 (RSM) 技术用于改进和验证结果。对于所有制造的纳米生物复合材料系统,结果表明,获得的输出参数值随着工艺输入参数的增加而增加,应变能和等效弹性应变值也反之亦然,纳米陶瓷成分也是影响结果的主要因素。本研究的主要研究结果推断,随着纳米陶瓷粉末(TiO 2 )含量从 1% 增加到 10%,压缩断裂强度和显微维氏硬度值分别增加了 50% 和 8.45%,而当添加 2% 的氧化锆(ZrO 2 )时,压缩断裂强度和显微硬度分别增加了 28.21% 和 40.19%。当使用 10% TiO 2 + 2% ZrO 2 /HDPE 生物复合材料时,在最高压缩率下
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。
课程描述本课程探讨了管理顾问的作用,以及咨询行业如何提高其服务组织的有效性。从内部的角度来看,该课程研究了作为外部顾问的含义,开发成功的咨询业务模型所需的技能以及如何专业吸引客户,以帮助他们通过设计/实施新颖的方法来取得新颖的方法来取得成功的竞争优势。这些技能不仅是通过理论和文本学到的,而且是由Klakurka教授独特地开发和交付的经验教学法。现实生活中的咨询项目©(RLCP©)是与实际高管一起解决实际业务问题的机会。模拟成为成功顾问所需的技能,本课程将有助于开发问题认同和解决能力,沟通和影响技能,并引入基于项目的管理心态。这些组件通过平衡正式流程,方法和模型与高性能团队的自发创造力,从而在咨询市场中取得了成功,这表明对客户和公司的企业也是如此。通过遵循咨询生命周期,课程参与者将学习咨询业务的细微差别,从发现问题到框架问题,分析问题,提出建议以及对不断重要的“第2阶段”的计划。学生将从这两个角度看到该行业,既可以作为未来的顾问,又是合作伙伴的职业和未来行业经理,最大程度地利用了外部资源的使用。该课程的讲座和深入案例分析的50:50组合将通过扮演创新顾问的角色来练习传统的战略,过程和功能分析。在本课程中,原始的RSM 495H是自成立以来一直由Klakurka教授设计,开发和交付的,作为开创性课程,采用了经验性学习和基于社区的方法。它涵盖了顾问,咨询能力的行动,
简介和概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 - 13 RACL 系列,单作用,铝制锁紧螺母气缸....................................................................................................................................................................................................................14 - 15 RACH 系列,单作用,铝制空心柱塞气缸....................................................................................................................................................................................................................................16 - 17 RAR 系列,双作用,铝制气缸....................................................................................................................................................................................................................................................................................16 - 17 RAR 系列,双作用,铝制气缸.................................................................................................................................................................................................................................................................................................................... . ... . . . . . . 24 CUSP 系列,超扁平气缸,带止动环 . . . . . . . . . . . . 25 LPL 系列,单作用,低高度大吨位锁紧螺母气缸 . . . . . . . . . . . . 26 - 27 BRC、BRP 系列,单作用,拉式气缸 . . . . . . . . . . . . . . . 28 - 29 RCH 系列,单作用,空心柱塞气缸 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 - 31 RRH 系列,双作用,空心柱塞 C
摘要:本文介绍了结构可靠性分析 (SRA) 方法的最新进展,旨在确定每种方法的关键应用及其拟议的变体、合格特征、优点和局限性。由于现代海上导管架结构的复杂性和规模日益扩大,越来越有必要提出一种准确有效的方法来评估其材料特性、几何尺寸和操作环境中的不确定性。SRA 作为一种不确定性分析形式,已被证明是结构设计中的有用工具,因为它可以直接量化输入参数的不确定性如何影响结构性能。在此,我们特别关注概率断裂力学方法,因为它准确地解释了在此类结构的设计中占主导地位的疲劳可靠性。成熟的分析/近似方法(例如一阶和二阶可靠性方法 (FORM/SORM))被广泛使用,因为它们为实际问题提供了准确性和效率之间的良好平衡。然而,在高度非线性系统的情况下,它们并不准确。因此,人们使用共轭搜索方向法、鞍点近似、子集模拟、证据理论等方法对其进行了修改。以提高准确性。最初,直接模拟方法(例如蒙特卡洛模拟方法 (MCS))及其各种方差减少技术(例如重要性抽样 (IS)、拉丁超立方抽样 (LHS) 等)对于具有非线性极限状态的结构来说是理想的,但对于计算非常低的失效概率的问题来说,它们表现不佳。总体而言,每种方法都有其优点和局限性,其中 FORM/SORM 是最常用的,但最近,由于计算能力的不断进步,模拟方法的使用越来越多。其他相关方法包括响应面法 (RSM) 和替代模型/元模型 (SM/MM),它们是高级近似方法,非常适合具有隐式极限状态函数和高可靠性指标的结构。文献中也发现了高级近似方法和可靠性分析方法的组合,因为它们适用于复杂、高度非线性的问题。