最复杂的机器学习形式涉及深度学习。这是一种神经网络,但具有许多预测结果的层。它已用于肿瘤学和放射学的准确诊断。此类模型中可能存在多个隐藏特征,由于当今的技术,这些特征可以更快地被发现。深度学习通常用于识别放射学中的癌变组织。4 它可以识别放射图像和放射组学中的潜在癌变病变,以检测肉眼看不见的临床相关数据。深度学习也用于语音识别。然而,这种类型的学习很复杂,超出了普通人类观察者的解释范围。人工智能 (AI) 在商业和社会等领域越来越普遍,现在也被用于医疗保健。人工智能技术有可能改变患者护理和管理医疗保健部门的行政流程。多项研究指出,人工智能在关键的医疗保健任务中表现优于人类,例如在诊断疾病、研究、发现肿瘤等方面。尽管如此,人们相信人工智能不会很快取代人类在医疗保健领域的地位。文章
您好,我是 Kenneth Bastian,AI Web Tools LLC(也称为 AiWebTools.Ai online)的创始人/开发者,充满激情。我们的企业是 AI 工具行业的灯塔,标志着我们可能是 AI 创新最广泛的中心。我们的创作涵盖范围广泛,既为我们雄心勃勃的项目而设计,也为提升其他业务的未来而设计。真正让我们与众不同的是,我们致力于突破 AI 能力的界限,打造能够创造奇迹的工具。
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
根据第31条规定,授权直接授予。 50,第 1 段,信函。 b) 根据第 36/2023 号立法法令,向 Croce Bianca Italiana Srl 提供救护车服务,配备医生,在 2025 年 1 月 14 日(竞争 7 名具有 IT 背景的助手)和 2025 年 1 月 31 日(竞争 3 名具有 IT 背景的专家)的竞争程序中,金额为 2,600.00 欧元(免征增值税),计入支出项目编号。 2025财政年度预算预测第10337号(“人员选拔支出”);
技术与隐私之间存在着复杂的联系,这已成为一个迫切的问题。批判理论,特别是那些分析权力、监视和控制的理论,为理解人工智能如何影响个人隐私提供了一个宝贵的框架。人工智能技术,特别是那些基于数据收集的技术,正在延续这些动态。例如,算法可以分析大量的个人数据,从而根据人们的行为、决定、偏好和弱点对其进行监视,而无需物理侵入他人的私人领域。这可能会导致观察者目光的内化。这种内化可能导致自我审查和顺从,因为个人会在假设自己被监视的情况下改变自己的行为;历史上有许多这样的自我审查的例子,这引出了一个重要的问题:个人如何才能真正体验他们的创造力?
社会文化维度之外的经济表现。这种态度导致了以下后果:一方面,人类的改造活动和对自然的积极干预被绝对化;另一方面,科技进步的作用被绝对化,在此框架内,以“人工智能”为基础,信息技术设备的应用范围不断扩大。随着以“人工智能”为基础的技术积极渗透到人类活动的各个领域,人们认为人类将失去对科技进步的控制,人类有可能沦为科技附属品。公众思想中出现了一种担忧,即人类可能会失去其存在本质的深层特征,即“人性面孔”。 “人类面部现象是独一无二的,是所有心身现象中最重要的”[7,第 173 页] 10–31]。通过面容,我们可以辨别出一个人是否具有一定的理性;通过面容,我们可以判断他的人类本质。面部现象从精神、灵魂、身体和智力属性的角度代表一个人作为一个个体、作为一个整体的存在。现代本体论和社会人类学的超越导致需要批判地分析技术文化的基本价值并发现新的价值增长点,寻求新的发展战略[5]。在这些战略中,技术领域必须履行其与人相关的服务作用——为人类活动的各个领域提供服务的生产资料。制定目标的特权应该只属于人类,并且在转型人类学策略中应该考虑“面子因素”。本文的目的是确定技术文明的主要人类社会背景。从实现既定目标的角度,提出了作者对人类与“人工智能”之间关系形成问题的思想立场。方法论。作品采用了历史哲学的方法,可以分析“人工智能”在不同文化和历史阶段的发展。系统活动方法使得人们能够根据人脑和机器、生物和人工“神经网络”组织的一般参数来比较人类和“人工智能”的功能,从而概括所研究的材料并得出结论。结果。 “人工智能”(AI)是指
课程编号是三位数,第一位数字代表通常提供该课程的学年,即对于为期四年的 B. Tech. 课程,课程编号为 1、2、3 或 4。在另外两位数字中,最后一位数字表示该课程通常是在奇数(奇数)、偶数(偶数)还是两个学期(零)都提供。中间的数字可以是任意数字。ECL 201 是 EC 部门在第三学期提供的实验课程,MAT 101 是在第一学期提供的数学课程,EET 344 是第六学期提供的电气工程课程,PHT 110 是第一和第二学期都提供的物理课程,EST 102 是由一个或多个部门提供的基础工程课程。这些课程编号将在课程和教学大纲中给出。
学费 40000 40000 45000 65000 40000 45000 65000 40000 45000 65000 40000 45000 65000 40000 45000 技能型增值培训费 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 毕业典礼费 2000 学期费 70000 45000 50000 70000 45000 50000 70000 45000 50000 70000 45000 52000 年费
1 liaoning 121000,P.R。中国2富国血管外科系的第一附属医院中国Binghui du,医学博士,Jinzhou医科大学的第一家附属医院,血管外科系,Jinzhou,Jinzhou,Liaoning 121000,P.R。 中国binghui.du@mail.com,2024年3月4日,2025年3月4日,摘要目的:深静脉血栓形成(DVT)是一种血管疾病,发病率约为0.1%。 内皮祖细胞(EPC)是内皮细胞的前体细胞,有助于血管修复和再生。 circrnas成为一种新的研究热点,因为它们参与了各种生物学过程,包括DVT的进展。 材料和方法:在从DVT患者(n = 42)和健康对照组(n = 42)获得的静脉血液样本中评估了HSA_CIRCRNA_092488的表达。 进行了HSA_CIRCRNA_092488的功能丧失研究。 通过QRT-PCR,Western印迹和免疫荧光测定法检查了相关RNA和蛋白质的表达。 通过CCK-8,Transwell分析和流式细胞仪测量转染细胞的增殖,迁移,细胞周期和凋亡。 使用RNA下拉分析,未透露EPC中HSA_CIRCRNA_092488和NLRP3的关联。 此外,在转染的EPC中检查了NLRP3 mRNA的稳定性。 结论:HSA_CIRCRNA_092488/NLRP3/NF-KB信号传导可能是治疗DVT治疗的新型治疗候选者。中国Binghui du,医学博士,Jinzhou医科大学的第一家附属医院,血管外科系,Jinzhou,Jinzhou,Liaoning 121000,P.R。中国binghui.du@mail.com,2024年3月4日,2025年3月4日,摘要目的:深静脉血栓形成(DVT)是一种血管疾病,发病率约为0.1%。内皮祖细胞(EPC)是内皮细胞的前体细胞,有助于血管修复和再生。circrnas成为一种新的研究热点,因为它们参与了各种生物学过程,包括DVT的进展。材料和方法:在从DVT患者(n = 42)和健康对照组(n = 42)获得的静脉血液样本中评估了HSA_CIRCRNA_092488的表达。进行了HSA_CIRCRNA_092488的功能丧失研究。通过QRT-PCR,Western印迹和免疫荧光测定法检查了相关RNA和蛋白质的表达。通过CCK-8,Transwell分析和流式细胞仪测量转染细胞的增殖,迁移,细胞周期和凋亡。使用RNA下拉分析,未透露EPC中HSA_CIRCRNA_092488和NLRP3的关联。此外,在转染的EPC中检查了NLRP3 mRNA的稳定性。结论:HSA_CIRCRNA_092488/NLRP3/NF-KB信号传导可能是治疗DVT治疗的新型治疗候选者。结果:在这项研究中,在DVT样品中检测到HSA_CIRCRNA_092488的上调,这可以抑制EPC的增殖和迁移,诱导细胞周期从S到G0/G1相和触发细胞凋亡。此外,NLRP3被确定为HSA_CIRCRNA_092488的电势下游分子,并且可以通过激活NLRP3/NF-KB信号传导发挥其调节功能。在细胞中过表达的HSA_CIRCRNA_092488明显升高了caspase-1,IL-1B,P-NF-κB-P65/NF-κB-P65和P-IκB-p65和p-iκBA/IκBA的蛋白质表达;反之亦然,HSA_CIRCRNA_092488的敲低显着降低了EPC中这些相关蛋白的水平。关键字:hsa_circrna_092488; nlrp3; NFKB; DVT引言深静脉血栓形成(DVT)是一种多因素疾病,并且有许多危险因素可以触发DVT,例如妊娠,固定性和血栓形成[1]。和DVT的危险因素可以分为有利于血栓形成的基本元素,包括静脉停滞,血管损伤和高凝性[2]。但是,尚未完全了解DVT发作和进展的详细机制。据报道,静脉血流,内皮激活,血小板和白细胞的粘附以及凝结激活的改变在DVT的发病机理中起着至关重要的作用[1,2]。诊断是基于高度怀疑的,包括危险因素病史,D-二聚体测量和超声扫描,显示出深静脉血块的存在[1]。其他相关测试包括肺动脉CT扫描和通风 - 灌注扫描时,当怀疑PE时[1,2]。内皮祖细胞(EPC)是内皮细胞的前体细胞,有助于血管修复和