在过去的二十四个月中,Paragon ID 将其投资和资源集中在四个关键战略领域:支付、零售业的物联网、实时定位系统和移动数字票务“基于账户的票务”,现在为公司提供中期稳健的增长潜力。在支付领域,该公司继续与全球几家最大的支付卡制造商直接或间接地签署许可协议,以获得 AmaTech 独特的无线支付技术。来自优质金属信用卡的联系。这些金属卡的市场增长率达到两位数,每张投入流通的卡都可能代表着 Paragon ID 的许可收入来源。获得 EMV(Eurocard MasterCard Visa)认证的 Thames Card Technology 已投资生产工具并加强了团队建设,以便在 2022 年向市场推出自己的一系列金属支付卡。在零售业物联网领域,Paragon ID 将其 Argent-sur-Sauldre 工厂的生产能力提高了一倍,用于生产面向该市场的 RFID 嵌体。该领域竞争公司的近期合并为 Paragon ID 提供了一个机会,使其成为大量 RFID 标签的替代和首选供应商,从而推动该关键领域的物联网发展。在实时定位系统 (RTLS) 领域,2021 年 5 月收购 Apitrak 使 Paragon ID 能够加速推出基于其 RFID Discovery 平台云的新版本,该平台是一种用于跟踪设备和患者的解决方案在医疗领域。法国和各种工业环境也已经部署了 RTLS 技术。工业 4.0、机器人和物联网的部署都是推动 RTLS 平台需求的因素。在移动数字票务领域,Airweb 为超过 40% 的法国交通运营商提供服务,这些运营商迄今为止都采用了非实物票务解决方案。环境考虑以及运营商尽量减少员工与乘客之间的身体接触的愿望加速了对数字移动票务和非接触式旅行支付方式的需求,特别是通过部署全面的支付解决方案。 (与客户帐户关联的票证)。在过去的半年里,该集团还进行了适当的收购,因为它们受到健康危机的影响很大,以增加其市场份额,以及其已经存在的传统报价的生产能力,所有这些都是通过增加其地理足迹:
医院正在探索其独特的现代化道路,但据非临床决策者报告,一套共同的技术进步正在占据主导地位。可穿戴设备和实时定位系统走在最前沿,近 70% 的受访非临床领导者计划在五年内引入这些设备。与此同时,温度监测环境传感器已经在制药行业中发挥了关键作用,随着 RFID 技术的应用日益广泛,它们也在医院环境中崭露头角。这些创新不仅代表了更新,而且代表了医疗效率和患者护理的革命,预示着技术和治疗无缝集成的未来。
摘要:许多研究都利用内部或外部触发剂靶向递送药物或其他治疗剂来控制和加速脂质体载体的释放,但利用治疗性X射线的能量作为触发剂的研究相对较少。我们合成了由电离辐射 (RTL) 触发以释放其治疗有效载荷的脂质体。这些脂质体由天然卵磷脂酰乙醇胺 (PE)、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱 (DSPC)、胆固醇和 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (DSPE-PEG-2000) 组成,经纳米粒子跟踪分析 (NTA) 测量,RTL 的平均尺寸在 114 至 133 纳米范围内。触发机制是有机卤素水合氯醛,已知它在暴露于电离辐射时会产生自由质子。一旦质子被释放,脂质体内部 pH 值的下降会促进脂质双层的不稳定以及脂质体内容物的逸出。在原理验证研究中,我们评估了在暴露于低 pH 值细胞外环境或暴露于 X 射线照射时 RTL 辐射释放荧光示踪剂的情况。照射前后的生物分布成像表明脂质体及其货物在局部肿瘤照射部位优先被吸收和释放。最后,将常用化疗伊立替康的强效代谢物 SN-38 与近红外 (NIR) 荧光染料一起装入 RTL 中,用于成像研究和测量单独或与放射暴露相结合的肿瘤细胞毒性,体外和体内。研究发现,与单独的任何一种治疗方式相比,三次静脉注射结合三次 5 Gy 局部肿瘤放射暴露后,满载 RTL 可增加体外放射对肿瘤细胞的杀伤力,并增强体内肿瘤生长延迟。
近年来,人们对在室内环境中使用低成本无电池标签定位物体和人员的兴趣日益浓厚,以便在物流、零售、安防等不同领域实现多种应用 [1]。UHF Gen.2 射频识别 (RFID) 标准技术是目前最流行的物品识别解决方案。不幸的是,它在设计时考虑了识别而非定位,因此商业读取器只能获得粗略的位置信息。已经提出了一些方法来提高定位精度 [2],但它们通常在恶劣的传播环境中不可靠或需要读取器端昂贵的硬件(例如,大型天线阵列)。与此同时,一些新的实时定位系统 (RTLS) 应运而生,通过采用超宽带 (UWB) 信号并利用其精细的时间分辨能力提供高精度定位 [3]。然而,当前基于 UWB 的定位系统使用的有源标签电流消耗大于 50 mA,这与能量收集或无线电力传输技术的利用不兼容,因此不可避免地需要电池或极低占空比操作 [4]。最近,遵循与标准 Gen.2 RFID 系统相同的反向散射原理,已经提出了一些解决方案,以实现与 UWB 反向散射信号一起工作的无电池标签,在定位精度方面取得了有趣的结果(约 5-15 厘米)[5]–[12]。尽管基于反向散射的架构在低复杂度和低功耗方面具有良好的特性,但它存在强大的链路预算(由于反射信号导致的双向链路)问题,再加上 UWB 频段非常保守的监管功率发射限制,将其应用限制在非常短距离的场景中(覆盖范围 < 10 米)[13]。本文介绍了一种使用无电池标签的 RTLS,它能够通过使用节能的 UWB 脉冲发生器将范围扩大到 10 米以上。在描述了系统的主要功能块之后,报告了实验结果。该系统是在欧洲航天局 (ESA) 资助的“LOST”(通过 RF 标签定位太空物体)项目内开发的。LOST 的目的是研究合适的技术来定位部署或漂浮在国际空间站或未来空间站内的物体。这种“室内”空间应用旨在跟踪环境中存在的每个带标签的物体,以避免潜在的危险情况,并使宇航员不会浪费极其宝贵的时间寻找丢失的工具。
摘要 — 射频识别 (RFID) 是一种快速发展的无线通信技术,用于电子识别、定位和跟踪产品、资产和人员。RFID 已成为构建实时定位系统 (RTLS) 的主要手段之一,该系统使用简单、廉价的标签(附在或嵌入物体中)和读取器(接收来自这些标签的无线信号以确定其位置)实时跟踪和识别物体的位置。大多数 RFID 标签定位技术严重依赖于对读取器和标签之间距离的精确估计。传统上,距离信息是从接收信号强度指示 (RSSI) 获得的。这种方法不准确,特别是在复杂的传播环境中。到达相位差 (PDOA) 的最新发展允许相干信号处理以提高距离估计性能。利用多个频率可以进一步提高范围估计性能。在本文中,我们重点研究基于多频的技术,以实现无源或半无源 RFID 标签范围估计的几个重要优势。使用精心设计的多个频率可以实现有效的相位上卷和消除 PDOA 方法中可能遇到的范围模糊问题。在复杂的传播环境中,当信号在某些频率上高度衰落时,基于多频的技术可提供频率分集以实现稳健的范围估计。这些优势不仅可以提高各种应用中 RFID 标签的范围估计精度,还可以在具有挑战性的场景中实现稳健的范围估计。
目前,SpaceX 对猎鹰 9 号和重型火箭的第一级采用返回发射场 (RTLS) 和近程着陆 (DRL) 方法,这需要大量燃料用于减速和着陆。涡扇发动机驱动的返回飞行技术(如带翼 LFBB)效率更高,但需要额外的推进系统及其燃料,这也会增加该级的惰性质量。一种完全不同的创新方法可使性能更好的 RLV 级返回,即获得专利的“空中捕获” (IAC) [1]:带翼可重复使用级将在空中被捕获并拖回发射场,此阶段无需任何自身的推进系统 [2]。图 1 显示了可重复使用级的完整操作 IAC 循环示意图。发射器升空时,捕获飞机正在近程会合区等候。在完成 MECO 后,可重复使用的带翼级与运载火箭的其余部分分离,然后沿弹道飞行,很快到达密度更大的大气层。在 20 公里左右的高度,它减速至亚音速,并在滑翔飞行路径中迅速下降。此时,可重复使用的返回级通常必须启动最后的着陆方法或必须启动其辅助推进系统。不同的是,在空中捕获方法中,可重复使用的返回级由一架装备齐全的捕获飞机(很可能是全自动的,也可能是无人驾驶的)等待,该捕获飞机提供足够的推力来牵引具有限制升阻比的带翼发射级。整个机动过程在几千米的高度完全亚音速 [3]。成功连接两辆运载火箭后,带翼可重复使用的返回级由大型运载飞机拖回发射场。靠近机场时,返回级从牵引机上释放,并像传统滑翔机一样自动滑行到着陆跑道。