目前,生成独特且无法复制的指纹以保护敏感数据的能力已将物理不可克隆函数 (PUF) 变成了一个令人兴奋的领域。PUF 的主要工作原理依赖于来自物理世界不可避免的变化的任何不可预测性来源 [2]。硅 PUF 是一种有吸引力的方法,可以利用时间零点变异性 (TZV) 作为熵源,它起源于集成电路的制造过程中。这种熵源固有的随机性允许以不可预测和无法复制的方式将 PUF 输入(即挑战)映射到 PUF 输出(即响应)。虽然存在多种类型的硅 PUF,但大多数都依赖于 TZV,因此通常具有较低的抗老化弹性 [3]。相比之下,最近提出的解决方案使用 CMOS 晶体管中的随机电报噪声 (RTN) 来正确实现具有强大且抗老化弹性的 PUF [4]。
我们期望生成 RTN 的实体或向负责报告的实体提供 RTN 的实体能够及时提供 RTN,以便负责报告的实体能够履行其英国 EMIR 报告义务。如果在报告时无法获得 RTN,负责报告的实体可以在报告跟踪号字段(表 2,第 2 项)中填写“RTNNotProvided”,但应在 RTN 可用时尽快将其更新为 RTN。
摘要:随机电报噪声 (RTN) 通常被认为是一种麻烦,或者更确切地说,是微型半导体器件的关键可靠性挑战。然而,这种情况正在逐渐改变,因为最近的研究表明,基于 RTN 信号固有随机性的新兴应用出现在最先进的技术中,包括真正的随机数生成器和物联网硬件安全。现在,人们正在积极探索合适的材料平台和设备架构,以将这些技术从萌芽阶段带入实际应用。一个关键的挑战是设计出可以可靠地用于确定性地创建用于 RTN 生成的局部缺陷的材料系统。为了实现这一目标,我们结合传导原子力显微镜缺陷谱和统计因子隐马尔可夫模型分析,在纳米级研究了嵌入 HfO 2 堆栈的 Au 纳米晶体 (Au-NC) 中的 RTN。在堆栈上施加电压后,Au-NC 周围的非对称电场会增强。这反过来又导致当电压施加到堆栈以诱导电介质击穿时,优先在 Au-NC 附近的 HfO 2 中产生原子缺陷。由于 RTN 是由紧密间隔的原子缺陷之间的各种静电相互作用产生的,因此 Au-NC HfO 2 材料系统表现出产生 RTN 信号的固有能力。我们的研究结果还强调,多个缺陷的空间限制以及由此产生的缺陷之间的静电相互作用提供了一个动态环境,除了标准的两级 RTN 信号之外,还会导致许多复杂的 RTN 模式。在纳米尺度上获得的见解可用于优化金属纳米晶体嵌入的高 κ 堆栈和电路,以按需生成 RTN 以满足新兴随机数应用的需求。关键词:传导 AFM、电介质击穿、金属纳米晶体、氧化物缺陷、随机电报噪声
脑干中的逆转录核(RTN)神经元调节对高碳酸高的通气反应。目前尚不清楚Phox2b-多酰氨酸重复突变(PHOX2B -PARMS)如何改变Phox2b和扰动RTN神经元的形成的功能。在这里,我们用人类多能干细胞的RTN样神经元产生了人类脑干器官(HBSO)。单细胞转录组学表明,phox2b+7ala parm的表达改变了后脑神经元的分化轨迹,并阻碍了HBSOS中RTN样神经元的前瞻性。使用无引导的大脑器官(HCO),PHOX2B+ 7ALA PARM中断了刺猬途径和HOX基因失调的Phox2b+神经元的模式。通过互补使用HBSO和HCO与患者和两个突变体在PHOX2B中携带不同多丙氨酸重复的多能干细胞系,我们进一步定义了多苯胺反复的长度与RTN呼吸中心的畸形与RTN呼吸畸形的长度与RTN的畸形与毒素毒素的疾病型模型的潜在模型,并展示了phox2-Persias的潜在模型,该模型构成了phox2b-Parms的强度,该模型繁多了。
GPR4 是一种质子感应 G 蛋白偶联受体,与许多外周和中枢生理过程有关。之前仅通过检测同源转录本或间接使用荧光报告基因来评估 GPR4 表达。在这项研究中,使用 CRISPR/Cas9 敲入技术在 Gpr4 的内源性基因座内编码血凝素 (HA) 表位标签,并使用特定的、特征明确的 HA 抗体可视化小鼠中枢神经系统中的 GPR4-HA;通过互补的 Gpr4 mRNA 检测进一步验证了 GPR4 表达。在有限的一组大脑区域中发现了 HA 免疫反应性,包括后梯形核 (RTN)、血清素能缝核、内侧缰核、外侧隔核和几个丘脑核。 GPR4 表达并不局限于特定神经化学特性的细胞,因为它在兴奋性、抑制性和胺能神经元细胞组中均有发现。尽管内皮细胞中 Gpr4 mRNA 表达清晰,但在脑血管内皮中未检测到 HA 免疫反应性。在 RTN 中,在胞体和血管沿线的近端树突以及脑干腹侧表面检测到 GPR4 表达;在 RTN 投射到两个已知目标区域时未检测到 HA 免疫反应性。GPR4 蛋白在小鼠脑神经元中的这种定位证实了其功能先前涉及的假定表达位点(例如,RTN 调节 CO 2 的呼吸),并为 GPR4 可能在哪些地方参与其他 CO 2 / H + 调节的脑功能提供了指导。最后,GPR4-HA 动物为进一步研究 GPR4 在脑外其他生理过程中的作用提供了有用的试剂。
关于 RTN 基金,澳大利亚政府已要求 CEFC 董事会设定平均回报目标,至少在中长期内覆盖基金成本。随着计划中的大型交易(如 Marinus Link)的完成,RTN 基金对非现金优惠贷款折扣的使用预计将随着时间的推移而增加。换句话说,CEFC 报告的优惠贷款折扣代表了可用于支付输电建设融资成本的节省金额,从而可靠地降低澳大利亚家庭和企业的成本。我们期望回报能够覆盖我们的成本,但为了公共政策结果的利益,我们将接受比私营部门对相应复杂性和风险的交易要求的回报更低的回报。
摘要 — 在现代 MOS 技术中,晶体管几何形状的不断缩小导致名义上相同的器件之间的差异性增加。为了研究此类器件的差异性和可靠性,需要测试具有统计意义的大量样本。在这项工作中,我们对导致 BTI 和 RTN 的缺陷进行了特性研究,该研究是在由数千个纳米级器件组成的定制阵列上进行的。在这种纳米级器件中,差异性和可靠性问题通常针对单个缺陷进行分析。然而,提取具有统计意义的结果需要大量的测量,这使得这种方法不可行。为了分析大量的测量数据,我们采用了由捕获和发射电荷的缺陷引起的阈值电压偏移的统计分布。这使我们能够使用以缺陷为中心的方法提取缺陷统计数据。针对各种栅极、漏极和体偏置以及两种几何形状对缺陷分布进行了表征,以验证方法并获得适合 TCAD 建模和寿命估计的统计数据。使用 TCAD 模型,我们可以推断出观察到的器件退化。最后,我们研究了体和漏极应力偏差对缺陷的影响,并观察到体偏压对器件性能下降的影响与栅极偏压相似。相比之下,对于所研究的技术,漏极偏压高达 − 0.45 V 时漏极应力似乎可以忽略不计。我们的测量结果还清楚地表明,整体 BTI 性能下降严重依赖于栅极体应力偏差,而提取的 RTN 缺陷数量似乎与应力无关。
3. 由 Apollo Global Management, Inc. 管理的 Apollo Investment Fund X, LP 同意于 2023 年 10 月 12 日以约 13 亿美元的价格从 TRG 董事、Oasis Management Company Ltd.、Irenic Capital Evergreen Master Fund LP 和其他公司手中收购英国餐厅和酒吧运营商 The Restaurant Group plc (LSE:RTN)。根据收购条款,每位 TRG 股东将有权获得每股 0.65 英镑的现金。现金对价将由 (i) Apollo 投资的股权和 (ii) 某些第三方提供商(包括 RBC)根据临时贷款协议提供的 2.6 亿英镑临时高级定期贷款提供的第三方融资提供资金。要约人打算与 TRG 现有的管理层和员工合作,以支持该业务。
通过 RTN 基金,我们正带头投资输电基础设施、长时储能、配电网络基础设施和分布式能源资源。通过 CEFC 普通投资组合(我们最初拨款 100 亿美元),我们还将投资可再生能源项目,包括与澳大利亚政府产能投资计划相关的项目,该计划的目标是到 2030 年额外增加 32 吉瓦的可再生能源产能,以及大规模电池储能。项目融资成本是清洁能源成本的主要组成部分。绿色银行使用的融资方法旨在降低这些成本,并使清洁能源项目更便宜、更易获得资本。其结果是以更低的成本部署更多的清洁能源。消费者省钱,开发商和投资者可以建设更多项目,肮脏、污染严重的能源将被取代。”
图1显示了第一代溅射铂NW的室温LF噪声谱,该NW采用基片阶梯光刻技术制造,其工艺顺序如图2所示。5,7,8,51通过基片阶梯光刻技术制造的NW是多晶的,其晶粒尺寸小于线直径。5,7 – 9,16,20,51 – 54图1中NW的噪声幅度在近五十个频率范围内以1/f 1.15的速率增加。f = 1 Hz时的Hooge参数为γH≅3×10−4,这是溅射Pt线和薄膜的典型值。51,71,96,97方程(2)中噪声幅度的1/N≈1/NA依赖性推测波动来源于体源。 20 世纪 70 年代末到 80 年代中期的几项重要实验证明了缺陷和杂质在金属低频噪声中的关键作用。52,55,66,83,95,98 – 103 一个具有单一特征散射或跃迁时间 τ 的缺陷会导致 RTN,其 Lorentzian 频谱在高于 1/ τ 的频率下下降为 1/ f 2,在低于 1/ τ 的频率下保持恒定。55,62,66,95,104 – 106 第 II.B 节中给出了 ZnO NW 的示例。如果噪声是由具有以下分布的多个缺陷引起的