尊敬的 Wenstrup 主席和 Ruiz 排名成员,我们,签名的免疫、公共卫生和医疗组织和个人,写信表达我们对美国疫苗安全系统的强烈支持。事实上,我们认为美国的疫苗安全系统是世界上最全面的系统之一。促进强大疫苗安全系统的公共政策符合我们所有人的最佳利益。虽然疫苗是市场上经过最严格测试和最安全的医疗产品之一,并且 COVID-19 疫苗(与所有疫苗一样)继续受到严格安全监控,但如果持续增加资金以利用大数据、了解不良反应背后的生物学机制和基因组学的新能力,疫苗安全监测将受益匪浅。在新冠疫苗推出期间,美国有 12 个独立系统监测新冠疫苗的安全性,分别是:V-Safe、疫苗不良事件报告系统 (VAERS)、疫苗安全数据链 (VSD)、临床免疫安全评估项目 (CISA)、国家医疗保健安全网络、食品药品管理局 (FDA) 的生物制品有效性和安全性系统、FDA 的哨兵计划、医疗保险和医疗补助服务中心 (CMS) 健康记录数据库、Genesis 以及退伍军人事务部、国防部和印第安人健康服务部使用的系统。这个监测网络意味着疾病控制和预防中心 (CDC) 与政府机构、医院系统、保险索赔数据以及医疗保健提供者和患者报告之间存在紧密协调。因此,公共卫生官员能够快速识别任何可能表明新冠疫苗安全性存在问题的信号。 2021 年春季,强生公司的疫苗被发现会导致一种罕见的凝血障碍,即血栓形成伴血小板减少症 (TTS)。因此,这一信号对于帮助医疗保健提供者识别患有 TTS 的患者并更有效地治疗他们至关重要。这也意味着强生公司的疫苗最终没有被考虑获得 FDA 的全面批准。
1. Ren J、Lee J、Na D. 基于合成生物学的基因工程工具的最新进展。J Microbiol. 2020;58:1-0。2. Lee HM、Vo PN、Na D. 合成生物学辅助代谢工程的进展。Catalysts. 2018;8(12):619。3. McCarty NS、Ledesma-Amaro R. 用于生物技术工程微生物群落的合成生物学工具。Trends Biotechnol. 2019;37(2):181-197。4. Breitling R、Takano E. 合成生物学在药物生产中的进展。Curr Opin Biotechnol. 2015;35:46-51。5. Nikel PI、Martínez-García E、de Lorenzo V. 利用合成生物学进行假单胞菌的生物技术驯化。Nat Rev Microbiol. 2014;12(5):368-379。6. Li J, Zhao H, Zheng L, An W. 合成生物学和生物安全治理进展。Front Bioeng Biotechnol. 2021;9:598087。7. Patra P, Das M, Kundu P, Ghosh A. 用于在非传统酵母中开发新型细胞工厂的系统和合成生物学方法的最新进展。Biotechnol Adv. 2021;47:107695。8. Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L 等。用于系统和合成生物学的微生物底盘的工程设计和改造。Synth Syst Biotechnol. 2019;4(1):25-33。 9. Ruiz Amores G、Guazzaroni ME、Magalhães Arruda L、Silva-Rocha R. 系统和合成生物学方法在将真菌改造为微生物细胞工厂方面的最新进展。Curr Genomics。2016;17(2):85-98。10. Vavitsas K、Glekas PD、Hatzinikolaou DG. 嗜热菌的合成生物学:将生物工程推向极致?Appl Microbiol。2022;2(1):165-174。
Gordon Arrowsmith-Kron 1,Michail Athanasakis-Kaklamanakis 2,3,Mia Au 4,5,Jochen Ballaf 1,6,Robert Berger ,Fritz Buchinger 10,Dmitry Budker 11,12,Luke Caldwell 13,14,Christopher Charles 15,16蒂莫·狄克尔(Timo Dickel)23,24,贾斯克·杜巴齐夫斯基(Jacek Dobaczewski)25,26,∗,克里斯托弗·杜尔曼(ChristophEdüllmann)27,28,29,以法莲(Ephraim Eliav 30),乔纳森·恩格尔(Jonathan Engel),乔纳森·恩格尔(Jonathan Engel) 33,Kiran T Flanagan 34,Alyssa n Gaiser 1,Ronald F Gaiser Ruz 35, *,康斯坦丁Gaul 7,Thomas F Geesen 9 Gwinner 37,Reinhard Heinke 4,Steven Hoekstra 8,38,Jason D Holt 15,39,Nicholas r Hutzler 40,∗,Andrew Jayich 32,Andrew Jayich 32, * Leach 1,41,Kirk W Madson 42,Stephan Malbrunot-Etetenauer 15,43,Takayuki Miyagi 15,Iain D Moore 44,Scott Moroch 35,Petr Navratil 15 ,Gerda Neyens 3,Eric B Norgard 46,Nicholas Nusgart 1,卢卡S f pa Roy A Ready 32,Moritz Pascal Reiter 50,Mikael Reponment 44,Sebastian Rothe 4,Maranan S Safronova 51,52,Christophy Scheedenerger 23,24,53 Dler 54, Jaideep t Singh 55, *,Leonid v Skripnikov 48,49,Anatoly v Titov 48,49,Silvia-Marian-Marian Udrescu
应对新兴病毒感染的持续威胁 Yoshihiro Kawaoka - 日本东京大学和国家全球健康与医学中心;美国威斯康星大学麦迪逊分校 yoshihiro.kawaoka@wisc.edu 每年都会发生流感疫情,导致发病率和死亡率上升,尤其是在脆弱人群中,例如幼儿和老年人。此外,偶尔也会发生大流行,例如 1918 年大流行。因此,流感对全球经济产生了巨大影响。相比之下,埃博拉病毒自 1976 年才被发现,直到最近,这种病毒的爆发造成的死亡人数相对较少,因为它们发生在农村偏远地区。然而,2014 年西非的疫情发生在一个人口稠密的大城市地区,改变了我们对埃博拉病毒爆发的理解。2019 年 12 月,SARS-CoV-2 在中国出现并在全球传播,引发了自 1918 年大流行以来的第五次大流行。我将讨论我们最近对这些病毒的研究。为气候驱动的感染扩大做好准备 Rino Rappuoli - 意大利锡耶纳生物技术基金会 rino.rappuoli@biotecnopolo.it 气候变化是传染病的强大放大器,几种热带病原体已经到达欧洲大陆。接触已知病原体的风险增加,以及可能出现具有大流行潜力的未知病原体,要求在诊断、疫苗、抗体和治疗方面进行科学驱动的投资,以减轻新疾病的影响。会议上将讨论世界如何为这种情况做准备的概述。卢布尔雅那微生物与免疫研究所的疫情防控 Tatjana Avšič-Županc - 斯洛文尼亚卢布尔雅那大学 tatjana.avsic@mf.uni-lj.si 卢布尔雅那大学医学院微生物与免疫研究所 (IMI MF UL) 是斯洛文尼亚最大的微生物与免疫医学研究与教学中心。讲座将介绍过去二十年来该研究所实验室在疾病暴发防控方面取得的成就。 推进欧洲研究:国家卫生机构在欧洲伙伴关系中的作用,这些伙伴关系与“同一个健康”抗微生物耐药性、流行病防控以及与 ECRIN/ItaCRIN 的合作相关 Maria Josè Ruiz Alvarez - 研究协调与促进服务 (CORI) 和意大利国立卫生研究院 (ISS)
Jim Anderson 达美航空 机长Pat Andrews 全球飞机服务公司,美孚公司 机长Dayo Awobokun 尼日利亚美孚生产公司 机长Jaime Bahamon 哥伦比亚航空 唐·贝特曼 联合信号公司 Jim Bender 波音民用飞机集团 Ben Berman 美国国家运输安全委员会 Philippe Burcier 空中客车工业公司 Ron Coleman 加拿大运输部和加拿大空军 Kevin Comstock 国际航空公司飞行员协会 Suzanna Darcy 波音民用飞机集团 David Downey 美国联邦航空管理局 机长Juan Carlos Duque 哥伦比亚航空 迪克·范·埃克 荷兰空中交通管制员 Erik Eliel 美国空军高级仪表学校 Bob Francis 美国国家运输安全委员会 机长Al Garin 全美航空 Robert Helmreich,博士德克萨斯大学奥斯汀分校 机长Doug Hill 联合航空公司 Ratan Khatwa 博士罗克韦尔柯林斯 Curt Lewis 美国航空公司 机长John Lindsay 英国航空公司 机长John Long 国际航空公司飞行员协会 Kevin Lynch 惠普公司 Lance McDonald 美国鹰航空公司 机长Dick McKinney 美国航空公司(已退休)、美国空军(已退休) 机长Erik Reed Mohn SAS 飞行学院 Henri Mudigdo 加鲁达航空公司 机长Luis Garcia Perez 墨西哥航空公司 Roger Rozelle 飞行安全基金会 Robert Ruiz 美国航空公司 Paul Russell 波音民用飞机集团 Jim Sackreiter 美国空军高级仪表学校 Sergio Sales 美国航空公司 Jim Savage 美国联邦航空管理局 Dick Slatter 国际民用航空组织 机长Fernando Tafur 美国空军航空医学院和哥伦比亚航空 Fabrice Tricoire Computed Air Services Robert Vandel 飞行安全基金会机长Keith Yim KLM Cityhopper 机长Tom Young 国际航空公司飞行员协会
Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Crescent Crescent Daro 和 Chris Doncy Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh 李飞飞 Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny J Hong Hong J. Jag 和 Thomas H. Jaghil I. Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Dtch Mikwall Manning Mikwall Mikwane Eric Dtch. Suraj Nair Avanika纳拉扬 迪帕克·纳拉亚南 本·纽曼 艾伦·聂 胡安·卡洛斯·尼布尔斯 哈米德·尼勒福罗尚 朱利安·尼亚尔科 吉雷·奥古特 劳雷尔·奥尔 伊莎贝尔·帕帕迪米特里奥 朴俊成 克里斯·皮耶希 伊娃·波特兰斯 克里斯托弗·波茨 阿迪蒂·拉古纳坦 罗布·赖希 任洪宇 弗里达·荣 尤瑟夫·罗哈尼 罗希亚·瑞安 罗希亚·罗 多拉·瑞安 卡梅罗 R. 佐川诗织Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan 吴家俊 吴玉怀 吴桑 谢志强 Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael 张天一 张希坤 张宇恒 张鲁恒 周凯蒂 珀西梁*1
Jim Anderson 达美航空 机长Pat Andrews 全球飞机服务公司,美孚公司 机长Dayo Awobokun 尼日利亚美孚生产公司 机长Jaime Bahamon 哥伦比亚航空 唐·贝特曼 联合信号公司 Jim Bender 波音民用飞机集团 Ben Berman 美国国家运输安全委员会 Philippe Burcier 空中客车工业公司 Ron Coleman 加拿大运输部和加拿大空军 Kevin Comstock 国际航空公司飞行员协会 Suzanna Darcy 波音民用飞机集团 David Downey 美国联邦航空管理局 机长Juan Carlos Duque 哥伦比亚航空 迪克·范·埃克 荷兰空中交通管制员 Erik Eliel 美国空军高级仪表学校 Bob Francis 美国国家运输安全委员会 机长Al Garin 全美航空 Robert Helmreich,博士德克萨斯大学奥斯汀分校 机长Doug Hill 联合航空公司 Ratan Khatwa 博士罗克韦尔柯林斯 Curt Lewis 美国航空公司 机长John Lindsay 英国航空公司 机长John Long 国际航空公司飞行员协会 Kevin Lynch 惠普公司 Lance McDonald 美国鹰航空公司 机长Dick McKinney 美国航空公司(已退休)、美国空军(已退休) 机长Erik Reed Mohn SAS 飞行学院 Henri Mudigdo 加鲁达航空公司 机长Luis Garcia Perez 墨西哥航空公司 Roger Rozelle 飞行安全基金会 Robert Ruiz 美国航空公司 Paul Russell 波音民用飞机集团 Jim Sackreiter 美国空军高级仪表学校 Sergio Sales 美国航空公司 Jim Savage 美国联邦航空管理局 Dick Slatter 国际民用航空组织 机长Fernando Tafur 美国空军航空医学院和哥伦比亚航空 Fabrice Tricoire Computed Air Services Robert Vandel 飞行安全基金会机长Keith Yim KLM Cityhopper 机长Tom Young 国际航空公司飞行员协会
模块模块考试日期考试开始时间讲师AMCS 201 AMCS 201 I申请数学I I I I I i,1224年12月8日,星期日,2024年12月9:00:Ying Wu大楼9-教室3223 AMCS 215 MATH MATHIL FOUNDANT MACHILE MACICAL LEANDAR MACHICAL LEANch of Machine Learning 12月10日,星期二2024年12月10日,2024年12月10日,乔治米歇尔·米歇尔·米歇尔·米歇尔(George Michel Turkiyah) 2024年12月11日上午9:00:00 AM Diogo Gomes大楼9-教室3120 AMCS 237傅立叶和小波理论理论,星期日,1224年12月8日,2024年12月9:00:Dominik Ludewig Michels大楼9-教室4228 AMCS 241 / Stat数字线性代数,2024年12月8日,星期日4:30:00 PM Matteo Parsani建筑物9-教室3223 AMCS 336数值方法/随机差异。
Yoav Ben-Simon, 1,4 Marcus Hooper, 1,4 Sujatha Narayan, 1,4 Tanya Daigle, 1,4 Deepanjali Dwivedi, 1 Sharon W. 4 Way, 1 Aaron Oster, 1 David A. Stafford, 2 John K. Mich, 1 Michael J. Taormina, 1 A. Refugio, 1 A. Martina-Jamena. R. Roth, 1 Shona Allen, 2 Angela Ayala, 1 Trygve E. Bakken, 1 Tyler Barcelli, 1 Stuard Barta, 1 6 Jacqueline Bendrick, 1 Darren Bertagnolli, 1 Jessica Bowlus, 1 Gabriella Boyer, 1 Krissy Brouner, 1 Brittny Casian, 1 7 Chara Chair, Chara Rush, 1 Chara Rush. barty, 1 Rebecca K. Chance, 2 Sakshi Chavan, 1 Maxwell 8 Departee, 1 Nicholas Donadio, 1 Nadezhda Dotson, 1 Tom Egdorf, 1 Mariano Gabitto, 1 Jazmin Garcia, 1 Amanda 9 Gary, 1 Molly Gasperini, 1 Jeffry Goldy, 1 1 Blanche, 1 Lucas Gregory, No. . 1 Francoise Haeseleer, 1 10 Carliana Halterman, 1 Olivia Helback, 1 Dirk Hockemeyer, 2 Cindy Huang, 1 Sydney Huff, 1 Avery Hunker, 1 Nelson 11 Johansen, 1 Zoe Juneau, 1 Brian Kalmbach, 1 Shannon Khem, 1 Emily Kuckel, 1 Lar Rasen, 1 12 Changkyu Lee, 1 Angus Y. Lee, 2 Madison Leibly, 1 Garreck H. Lenz, 1 Elizabeth Liang, 1 Nicholas Lusk, 1 Jocelin 13 Malone, 1 Tyler Mollenkopf, 1 Elyse Morin, 1 Dakota Newman, 1 Lydia Ng, 1 Kiet Ngoste, 1 1 Victoria Oman, 14 h Pham, 1 Christina A. Pom, 1 Lydia Potekhina, 1 Shea Ransford, 1 Dean Rette, 1 Christine 15 Rimorin, 1 Dana Rocha, 1 Augustin Ruiz, 1 Raymond EA Sanchez, 1 Adriana Sedeno-Cortes, 1 Joshua P. Sevigny, 1 Nadi Lava, 16 Lyvalomi Ana R. Sigler, 1 La' Akea Siverts, 1 Saroja Somasundaram, 1 Kaiya 17 Stewart, 1 Eric Szelenyi, 1 Michael Tieu, 1 Cameron Trader, 1 Cindy TJ van Velthoven, 1 Miranda Walker, 1 Natalie 18 Weed, 1 Morgan Wirlin, 1 Toren Wood, 1 Toren Wood, 1 Zilda o, 1 Thomas Zhou, 1 Jeanelle Ariza, 1 Nick 19 Dee, 1 Melissa Reding, 1 Kara Ronellenfitch, 1 Shoaib Mufti, 1 Susan M. Sunkin, 1 Kimberly A. Smith, 1 Luke 20 Esposito, 1 Jack Waters, 1 Bargavi Thyagarajan, 1 Yaqin , 1 Shenq , 1 Sheng Leng . Boaz P. Levi, 1 John 21 Listen, 2,3 Jonathan Ting, 1 Bosiljka Tasic 1,5,* 22
稿件的所有计算资源均可在 Git 存储库 [1] 和相关数据文件 [2] 中找到。其中包括用于生成输入文件、运行计算、处理和分析数据以及生成图形的脚本。文件组织在存储库中的 README.md 文件中描述。所有 DFT 计算均使用 FHI-aims [3] 完成,其使用原子中心基组和数值径向部分。我们使用严格的默认基组和网格设置,这可确保本文研究的范德华 (vdW) 体系的结合能数值收敛到 0.1 kcal/mol。MBD 计算借助于集成到 FHI-aims 中的 Libmbd 库 [4] 执行,并且可使用当前开发版本在 FHI-aims 中直接执行 MBD-NL 计算。我们目前的实现不包括函数导数δαVV'[n]/δn,因此本文在自洽PBE密度上评估MBD-NL,而导数的实现仍在进行中。重要的是,已发现由范德华相互作用引起的电子密度变化对相互作用能和核力的影响可忽略不计[5]。S66、X23和S12L集的PBE、PBE0和VV10能量取自[6],其使用与本文相同的数值设置。对于分子晶体,所有DFT和MBD计算均使用逆空间中密度至少为0.8˚A的k点网格。对于硬固体,我们使用了[7]中的k点密度。所有分子和晶体几何形状均直接取自各自的基准集,未进行任何松弛。表 I 报告了 MBD-NL、MBD@rsSCS 和 VV10 与 PBE 和 PBE0 函数结合对一组有机分子晶体(X23,[11])、一组超分子复合物(S12L,[12])和一组 26 种层状材料(称为“26”,[10])的性能。在标准范德华数据集中,S12L 是唯一一个 MBD-NL 与 PBE 和 PBE0 函数结合时实现不同性能的数据集。这主要是因为 PBE 与 π – π 复合物的结合力比 PBE0 略强。对于大型 π – π 复合物,半局部 DFT 和长程范德华模型之间的适当平衡尚不清楚 [6]。在“26”集中,MBD@rsSCS 哈密顿量对 26 种化合物中的 20 种具有负特征值。然而,为了获得有限能量,我们使用了 Gould 等人提出的特征值重标度 [9]。图 1 比较了由 PBE-NL 计算的混合有机/无机界面的结合能曲线以及 Ruiz 等人的 MBD@rsSCS 和 TS 方法的表面变体 [13]。表 II 列出了 DFT+MBD 的时序示例