锂离子电池(LIB)用于为从便携式消费电子设备到电动汽车和网格式储能系统的一系列应用。现在,随着LIB在高功率和复杂应用中的越来越多的应用,预测可靠操作的剩余有用寿命(RUL)并保护电池组免受包括灾难性故障在内的不必要的事件的意义非常重要。关于RUL的实时信息对于预测电池故障状况至关重要,从而有效预防或至少减少电池故障可能造成的损坏。此外,准确的Rul对于在其使用寿命结束时安排常规维护和必要的更换非常有帮助。因此,RUL预测已成为研究人员感兴趣的话题。在过去的十年中提出了几种RUL估计技术,基于机器学习(ML)的技术在准确性,适应性和建模方面表现出了优越性。因此,基于ML的RUL预测方法是根据本文中的基本绩效参数对其基本性能参数进行了全面审查的。还提出了有关问题,挑战,趋势和未来研究范围的详细讨论,以向研究人员提供明确的指南。
锂离子电池(LIB)用于为从便携式消费电子设备到电动汽车和网格式储能系统的一系列应用。现在,随着LIB在高功率和复杂应用中的越来越多的应用,预测可靠操作的剩余使用寿命(RUL)并保护电池组免受包括灾难性故障在内的不必要的事件,这是非常重要的。关于RUL的实时信息对于预测电池故障状况至关重要,导致预防有效或至少减少电池故障可能造成的损坏。此外,准确的Rul对于在其使用寿命结束时安排常规维护和必要的更换非常有帮助。因此,RUL预测已成为研究人员兴趣的话题。在过去的十年中提出了几种RUL估计技术,基于机器学习(ML)的技术在准确性,适应性和建模方面表现出了优越性。因此,基于ML的RUL预测方法是根据本文中的基本绩效参数对其基本性能参数进行了全面审查的。还提出了有关问题,挑战,趋势和未来研究范围的详细讨论,以向研究人员提供明确的指南。
锂离子电池是使用最广泛的储能设备,对其剩余使用寿命的准确预测(RUL)对于它们的可靠操作和预防事故至关重要。这项工作彻底研究了基于过去十年中相关论文的客观筛选和统计数据,通过机器学习(ML)算法进行了统治预测的发展趋势,以分析研究核心和未来的改进方向。在本文中还探讨了使用RUL预测结果扩展使用锂离子蝙蝠寿命的可能性。在380篇相关论文中首次确定了用于RUL预测的十种最常用的ML算法。则提出了RUL预测的一般流以及对RUL预测中使用的四种最常用信号预处理技术的深入介绍。公共ML算法的研究核心以计时顺序以统一格式给出。还可以从精确度和特征的各个方面进行比较,以及新颖的和一般的改进方向或机会,包括改进早期预测,局部再生建模,物理信息融合,广义转移学习和硬件实施。最后,总结了电池寿命扩展的方法,并且使用RUL作为延长电池寿命的指示的可行性已被淘汰。电池寿命可以通过根据未来在线的准确的RUL预测结果来优化电荷式服务时间来延长电池寿命。2023作者。本文旨在为电池规则预测和终身扩展策略中ML算法的未来改进提供灵感。科学出版社和达利安化学物理研究所,中国科学院。由Elsevier B.V.和科学出版社出版。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
摘要。准确估算工业系统中剩余的使用寿命(RUL)对于优化维护策略和规定资产寿命至关重要。数据驱动的RUL模型利用机器学习(ML)算法从操作数据中提取模式,从而在捕获复杂关系中进行例外。尽管RUL预后模型的进步发展,但机器学习算法的黑盒性质仍为工业用户带来挑战,阻碍了信任和采用。明显的人工智能(XAI)方法通过使复杂的模型透明和可解释来提供有希望的解决方案。本文着重于应用XAI方法来增强对RUL预后的机器学习模型的信任。我们强调对解释机制的定量评估,包括一致性和鲁棒性等指标。我们的研究有助于制定更可信赖和可靠的预测维护策略。我们评估了XAI方法的规定RUL模型,该模型应用于工业型数据的现实情况。我们的发现旨在为工业从业人员提供宝贵的见解,并指导他们选择RUL预后技术。
锂离子 (Li-ion) 电池是现代电力系统不可或缺的部件,但其性能会随着时间的推移而下降。准确预测这些电池的剩余使用寿命 (RUL) 对确保电网的可靠高效运行至关重要。在此基础上,本文提出了一种新的 Coati 集成卷积神经网络 (CNN)-XGBoost 方法,用于锂离子电池的早期 RUL 预测。该方法采用 CNN 架构,通过图像处理技术自动从电池放电容量数据中提取特征。从 CNN 模型中提取的特征与基于电池充电策略信息从前 100 个电池测量循环数据中提取的另一组特征相连接。然后将这组组合的特征输入 XGBoost 模型进行早期 RUL 预测。此外,Coati 优化方法 (COM) 用于 CNN 超参数调整,以提高所提出的 RUL 预测方法的性能。数值结果揭示了所提出方法在预测锂离子电池 RUL 方面的有效性,其中 RMSE 和 MAPE 分别获得了 106 次循环和 7.5% 的值。
对于锂离子(锂离子)电池,诸如材料老化和容量衰减之类的问题会导致电池性能降解甚至灾难性事件。预测剩余的使用寿命(RUL)是指示锂离子电池健康的有效方法,这有助于提高电池动力系统的可靠性和安全性。我们提出了一个新型的神经网络Attmoe,该网络将注意力机制与专家(MOE)的混合物结合在一起,以捕获电池RUL预测的容量淡出趋势。面对从传感器收集的原始数据始终充满噪音的问题时,Attmoe使用辍学掩码来代替原始数据。为了进行RUL预测,一个关键思想是,注意机制捕获了序列中的元素和更多注意力之间的长期依赖性,这是对包含更多降级信息的重要特征。另一个关键思想是,MoE使用许多专家来提高模型能力以实现更好的表示。最后,我们使用两个公共数据集进行了实验,以表明ATTMOE在RUL预测中有效,并且在相对误差方面提高了10%–20%。我们的项目都是开源的,可在https://github.com/xiuzezhou/rul上找到。
Vizient 公共政策和政府关系办公室 医疗保险和医疗补助计划以及儿童健康保险计划;急症护理医院和长期护理医院预付费系统的住院预付费系统以及政策变化和 2025 财年费率;质量计划要求;以及其他政策变化 2024 年 8 月 7 日 与建立和维持基本药物获取的单独 IPPS 支付相关的关键要点 8 月 1 日,医疗保险和医疗补助服务中心 (CMS) 发布了最终规则,以更新住院预付费系统 (IPPS) 下的支付率并推进其他政策,包括减轻药品短缺影响的政策。本摘要重点介绍与药品短缺相关的最终政策(第 1057-1097 页)。一般而言,CMS 最终确定了对某些建立并维持 6 个月基本药物缓冲库存的小型独立医院(100 张或更少床位)的额外支付机会。 1 CMS 重申,符合条件的医院可自愿建立一个或多个缓冲库存。自 2024 年 10 月 1 日或之后开始的成本报告期,IPPS 将提供此单独付款(每两周一次或按成本报告结算一次)。此外,CMS 指出,它正在通过《文书工作减少法案》(PRA)流程就此拟议付款的补充成本报告表单独征求意见。截至撰写本摘要时,补充成本报告表和评论机会尚未发布。最后,在最终规则中,CMS 指出,如果需要进行其他更改,它将根据需要在未来的规则制定中对政策提出适当的修改。基本药物清单为了确定哪些药物是必需的,CMS 最终确定使用美国卫生与公众服务部 (HHS) 应急准备和响应助理部长办公室 (ASPR) 和先进再生制造研究所 (ARMI) 的 86 种基本药物清单(“ARMI 清单”)。
数字阴影能够成功模拟电机的速度和 q 轴电流调节。这种精确的响应确保了数字阴影为 RUL 模型提供的输入与真实组件所经历的输入相当。瞬态模型和硬件响应之间的一致性如图 2 所示。仅从负载和速度设定点,瞬态模型就能够准确预测电机的速度、扭矩和功率响应。然后使用这些计算出的量作为输入来确定关键系统组件的 RUL。数字阴影能够根据操作条件动态更新 RUL 估计,如图 3 所示。这种一致性凸显了数字阴影在镜像实时操作和估计不同操作条件下的组件寿命方面的有效性。这种数字阴影的一个重要方面是它对电机的 RUL 估计的动态适应,这显示出对操作变化的高度响应。当电机在 100 秒内改变速度时,这种反馈尤为明显。图 3 中 RUL 图的斜率降低捕捉到了这一事件,速度降低后,图的后半部分电机扭矩也相应下降。这种响应能力对于维护和运营策略的实时监控和决策至关重要,将数字阴影定位为 eVTOL 动力系统管理的宝贵预测工具
退化建模和剩余使用寿命 (RUL) 预测对于航空发动机的预测和健康管理至关重要。虽然已经引入了基于模型的方法来预测航空发动机的 RUL,但很少有关于使用新型数据驱动预测建模方法估计航空发动机 RUL 的研究报道。本研究的目的是介绍一种基于集成学习的预测方法来建模由于磨损而导致的指数退化过程以及预测航空发动机的 RUL。集成学习算法结合了多个基学习器,包括随机森林 (RF)、分类和回归树 (CART)、循环神经网络 (RNN)、自回归 (AR) 模型、基于自适应网络的模糊推理系统 (ANFIS)、相关向量机 (RVM) 和弹性网络 (EN),以实现更好的预测性能。粒子群优化 (PSO) 和顺序二次优化 (SQP) 方法用于确定分配给基学习器的最佳权重。在商用模块化航空推进系统仿真 (C-MAPSS) 工具生成的数据上演示了由集成学习算法训练的预测模型。实验结果表明,集成学习算法可以非常稳健地预测飞机发动机的 RUL,并且优于文献中报道的其他预测方法。[DOI:10.1115/1.4041674]
摘要 — 预测具有有限衰减历史的锂离子电池的剩余使用寿命 (RUL) 至关重要,因为它可以确保及时维护电动汽车并有效重复使用二次电池。考虑到现实的电池运行条件,本文研究了在目标电池衰减历史有限的情况下在部分充电和放电条件下的 RUL 预测。鉴于其能够告知特征重要性,采用随机森林来帮助对不同的电池测量进行优先排序,并确定准确预测 RUL 所需的最少运行数据量。通过使用一个完整的充电和放电循环检查预测性能,结果表明充电和放电的持续时间、使用容量和电压信号包含与电池 RUL 相关的重要特征。在荷电状态 (SOC) 不确定性下,还研究了部分充电和放电下的预测性能,结果表明,在 SOC 范围 [0.2,0.8] 内收集的数据可实现令人满意的性能。与现有的使用四个完整充电和放电循环的卷积神经网络方法相比,验证了所提方法增强的板载可行性。对 SOC 范围的敏感性分析表明,SOC 范围 [0 . 1 , 0 . 2] 内的数据包含磷酸铁锂电池最丰富的 RUL 相关信息。对具有不同化学性质、环境温度和 C 速率的电池进行广泛验证进一步证明了所提方法的稳健性。