本文是一系列试点研究中的第一篇,旨在探索数据可用性和衡量实体经济投资与气候变化缓解目标一致性的方法。分析重点关注 2010 年至 2017 年挪威制造业有形固定资产投资,估计平均每年 25 亿美元。然后,它根据两个参考点衡量这些投资在子行业层面的一致性或不一致性:欧盟可持续活动分类法草案和国际能源署为北欧地区制定的 2°C 情景。该分析进一步确定了这些子行业的融资来源,并讨论了未来潜在的投资和融资挑战。最后,该研究得出了方法论结论,并确定了需要进一步开展国家和行业层面的试点研究,以改进和扩大国际层面的此类分析。
IV. 候选架构 ................................................................................................49 A. 功能分析 ..............................................................................................49 1. 行为分配 ..............................................................................................49 2. 功能需求 ..............................................................................................51 B. 架构综合 ..............................................................................................55 1. 功能架构 ..............................................................................................55 2. 输入 / 输出数据 ......................................................................................64 3. 物理架构 .............................................................................................66 4. 接口定义 .............................................................................................75 C. 性能特性 .............................................................................................78 1. 马尔可夫链 .............................................................................................79 2. 建模范式 .............................................................................................79 3. 仿真分析 .............................................................................................81
类型:A320(印度航空)和 B737(捷特航空) 国籍:印度 注册:VT-EDD(印度航空)和 VT-JBE(捷特航空) 2. 所有者/运营商:M/s 印度航空和 M/s 捷特航空 3. 机长:ALTP 持有人(印度航空)和 ATPL 持有人(捷特航空) 受伤程度:无 4. 副驾驶:ALTP 持有人(印度航空)和 CPL 持有人(捷特航空) 受伤程度:无 5. 事故地点:德里 IGI 机场 6. 事故日期和时间:2016 年 1 月 30 日; 06:15:00UTC(大约) 7. 最后出发点:印度航空在 Shamshabad,捷特航空在 Bengaluru 8. 预定着陆点:印度航空和捷特航空均为德里 9. 运营类型:印度航空和捷特航空均为定期运营 10. 机上机组人员:(02+05)印度航空 & 捷特航空(02+05)受伤程度:无 11. 机上乘客:134 人(印度航空)& 142 人(捷特航空)受伤程度:无 12. 运营阶段:两架飞机均着陆 13. 事件类型:因试图降落在未指定的跑道上而发生的空中接近
类型:A320(印度航空)和 B737(捷特航空) 国籍:印度 注册:VT-EDD(印度航空)和 VT-JBE(捷特航空) 2. 所有者/运营商:M/s 印度航空和 M/s 捷特航空 3. 机长:ALTP 持有人(印度航空)和 ATPL 持有人(捷特航空) 受伤程度:无 4. 副驾驶:ALTP 持有人(印度航空)和 CPL 持有人(捷特航空) 受伤程度:无 5. 事故地点:德里 IGI 机场 6. 事故日期和时间:2016 年 1 月 30 日; 06:15:00UTC(大约) 7. 最后出发点:印度航空在 Shamshabad,捷特航空在 Bengaluru 8. 预定着陆点:印度航空和捷特航空均为德里 9. 运营类型:印度航空和捷特航空均为定期运营 10. 机上机组人员:(02+05)印度航空 & 捷特航空(02+05)受伤程度:无 11. 机上乘客:134 人(印度航空)& 142 人(捷特航空)受伤程度:无 12. 运营阶段:两架飞机均着陆 13. 事件类型:因试图降落在未指定的跑道上而发生的空中接近
类型:A320(印度航空)和 B737(捷特航空) 国籍:印度 注册:VT-EDD(印度航空)和 VT-JBE(捷特航空) 2. 所有者/运营商:M/s 印度航空和 M/s 捷特航空 3. 机长:ALTP 持有人(印度航空)和 ATPL 持有人(捷特航空) 受伤程度:无 4. 副驾驶:ALTP 持有人(印度航空)和 CPL 持有人(捷特航空) 受伤程度:无 5. 事故地点:德里 IGI 机场 6. 事故日期和时间:2016 年 1 月 30 日; 06:15:00UTC(大约) 7. 最后出发点:印度航空在 Shamshabad,捷特航空在 Bengaluru 8. 预定着陆点:印度航空和捷特航空均为德里 9. 运营类型:印度航空和捷特航空均为定期运营 10. 机上机组人员:(02+05)印度航空 & 捷特航空(02+05)受伤程度:无 11. 机上乘客:134 人(印度航空)& 142 人(捷特航空)受伤程度:无 12. 运营阶段:两架飞机均着陆 13. 事件类型:因试图降落在未指定的跑道上而发生的空中接近
类型:A320(印度航空)和 B737(捷特航空) 国籍:印度 注册:VT-EDD(印度航空)和 VT-JBE(捷特航空) 2. 所有者/运营商:M/s 印度航空和 M/s 捷特航空 3. 机长:ALTP 持有人(印度航空)和 ATPL 持有人(捷特航空) 受伤程度:无 4. 副驾驶:ALTP 持有人(印度航空)和 CPL 持有人(捷特航空) 受伤程度:无 5. 事故地点:德里 IGI 机场 6. 事故日期和时间:2016 年 1 月 30 日; 06:15:00UTC(大约) 7. 最后出发点:印度航空在 Shamshabad,捷特航空在 Bengaluru 8. 预定着陆点:印度航空和捷特航空均为德里 9. 运营类型:印度航空和捷特航空均为定期运营 10. 机上机组人员:(02+05)印度航空 & 捷特航空(02+05)受伤程度:无 11. 机上乘客:134 人(印度航空)& 142 人(捷特航空)受伤程度:无 12. 运营阶段:两架飞机均着陆 13. 事件类型:因试图降落在未指定的跑道上而发生的空中接近
本研究介绍了航空电气化如何为挪威未来的可持续和低排放航空运输做出贡献。这是 Avinor 为实现挪威航空电气化而不断努力的一部分,也是 2017 年 6 月提出的关于同一主题的简短初步研究的后续研究。航空电气化是挪威政治议程中的重中之重。2015 年 12 月,Avinor 接受了挪威航空运动组织 (NLF) 的邀请,参与一项长期项目,探索挪威航空电气化的可能性。后来,挪威政府的文件中提到了这一主题。2017 年夏季发布的最新挪威国家交通计划 (NTP 2018-2029) 概述了政府打算如何在当前十年(2018 年至 2029 年)内优先分配交通部门的资源。NTP 的总体目标是开发“一个安全的交通系统,促进经济增长并有助于向低排放社会过渡。”正如世界各地有据可查的那样,高度的人口流动性是经济增长和社会福利的引擎,这在很大程度上得益于维护良好的基础设施所带来的高效交通。但与此同时,交通运输的使用增加会导致与交通运输相关的污染物排放增加,包括改变气候的温室气体,以及潜在的安全问题和局部干扰,如噪音和交通。为实现其总体目标,最新的 NTP 首次纳入了一项创新战略,其中新技术和商业模式将获得更高的优先级,以加快该国向更高效、低排放的交通方式的过渡。此外,它还指出,政府支持 Avinor 和 NLF 的挪威航空电气化倡议。气候和环境部向议会提交的关于挪威 2030 年气候战略的白皮书 (Meld.St. 41 (2016–2017)) 重申了这一信息,并在 2018 年 1 月新保守党联合政府的政治平台中得到加强,后者明确要求 Avinor 制定一项挪威商业航空电气化计划。要点总结 挪威短途机场网络中有 20 多个目的地/航线,距离从 38 到 170 公里不等,所有这些目的地/航线都可以通过电池供电的电动飞机轻松飞行。许多飞机正在接受在该网络中运行的第一架电动飞机很可能配置为混合动力飞机(即,电动飞机采用标准模式的燃料发电机作为备用电源),但将能够仅通过电力运行。对于一些目的地,飞机可以继续前往下一个机场或返回出发地而无需充电,并且仍然仅使用电力飞行,因为总飞行距离相当短。借助混合动力飞机方法提供的灵活性,可以逐步实施电动航空,从而降低引入阶段出现违规行为的风险。在 10 到 15 年的时间内,电池技术将为纯电动飞机提供足够的容量,以适应大约 1 小时的飞行或超过 500 公里的飞行。考虑到挪威短途机场网络(挪威语缩写为 FOT,英语缩写为 PSO - 公共服务义务)中的大部分航班飞行距离不到 200 公里,这一电动交通方案一旦实施,将产生广泛而直接的影响。(PSO 航线网络中的航班获得政府补贴以维持航线,因为乘客数量不足以进行商业运营。)电动飞机的技术开发正在稳步推进,并得到航空业的广泛支持,涉及波音和空客等领先制造商,以及西门子、劳斯莱斯、赛峰等主要供应商,以及在许多领域处于领先地位的一系列新企业。
三.文献综述 ................................................................................................33 A.介绍 ................................................................................................33 B.伤害研究 ................................................................................................33 C. T-11 ATPS 问题/关注 ......................................................................34 1.T-11 备用降落伞意外启动 ......................................................38 2.减少角通风口交叉倒置 .............................................................39 3.减少角通风口缠绕 .............................................................40 4.降低主曲线销的灵敏度 .............................................................41 5.减小降落伞尺寸和重量 .............................................................42 6.提高对降落伞完整或部分故障 ................................................................................................43 7.缩短降落伞展开顺序 ..............................................................44 8.降低降落伞打包程序的复杂性 ................................................44 D. 总结 ............................................................................................................45
三.文献综述 ................................................................................................................33 A. 介绍 ................................................................................................................33 B. 伤害研究 ..............................................................................................................33 C. T-11 ATPS 问题/关注点 ........................................................................34 1. T-11 备用降落伞意外启动 .............................................................38 2. 减少角通风口交叉倒置 .............................................................................39 3. 减少角通风口缠绕 .............................................................................40 4. 降低主曲线销的灵敏度 .............................................................................41 5. 减小降落伞尺寸和重量 .............................................................................42 6. 提高对降落伞完全或部分故障的认识 ................................................................................................43 7. 缩短降落伞展开顺序 .............................................................................44 8. 降低降落伞包装程序的复杂性 ................................................................................................44 D. 总结 ................................................................................................................45