: 基于构建体的 DNA 打靶。核酸研究 39 : e82。 朱 CC,王 CC,孙 CS,许 C,尹 KC,朱 CY 和毕 FY( 1975 )通过氮源比较实验建立水稻花药培养的有效培养基。植物学报 15 : 1 - 11。 Faure, J - E, Digonnet, C 和 Dumas, C( 1994 )玉米配子的粘附和融合的体外系统。科学 263 : 1598 - 1600。 Holm, PB, Knudsen, S, Mouritzen, P, Negri, D, Olsen, FL 和 Roué, C( 1994 )从受精卵细胞机械分离的原生质体再生可育大麦植株。 Plant Cell 6 :531 – 543。Hwang, WY, Fu, Y, Reyon, D, Maeder, ML, Tsai, SQ, Sander, JD, Peterson, RT, Yeh, JR 和 Joung, JK (2013)利用 CRISPR-Cas 系统在斑马鱼中实现高效基因组编辑。Nat Biotechnol 31 :227 – 229。Jones, HD (2015)基因组编辑的监管不确定性。Nat Plants 1 :14011。Koiso, N, Toda, E, Ichikawa, M, Kato, N 和 Okamoto, T (2017)从水稻和玉米中分离的卵细胞和受精卵中基因表达系统的开发。Plant Direct 1 :e00010。 Kranz, E, Bautor, J 和 Lörz, H ( 1991 ) 单卵母细胞体外受精
在量子计算机上模拟费米子系统的能力有望彻底改变化学工程、材料设计、核物理等领域。因此,优化模拟电路对于充分利用量子计算机的功能具有重要意义。在这里,我们从两个方面解决这个问题。在容错机制下,我们优化了 rz 和 t 门数以及所需的辅助量子比特数,假设使用乘积公式算法进行实现。与现有技术相比,我们获得了门数节省率为 2 和所需辅助量子比特数节省率为 11。在预容错机制下,我们优化了两量子比特门数,假设使用变分量子特征求解器 (VQE) 方法。具体到后者,我们提出了一个框架,可以使 VQE 进程向费米子系统基态能量收敛的方向引导。该框架基于微扰理论,能够将 VQE 进程每个循环的能量估计值提高约三倍,与试验台上经典可访问的水分子系统中的标准 VQE 方法相比,更接近已知基态能量。改进的能量估计反过来又会节省相应数量的量子资源,例如量子比特和量子门的数量,这些资源需要在已知基态能量的预定公差范围内。我们还探索了一套从费米子到量子比特算子的广义变换,并表明在小规模情况下,资源需求节省高达 20% 以上是可能的。
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最引人注目的事件。125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多位嘉宾出席,其中 240 人是来自国外,得到应有的承认。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。1891 年首次投入使用时,它可能是世界上最先进的物理实验室,这座建筑具有惊人的对称性和优雅性,同时提供了最大的功能性,是 Hermann von亥姆霍兹与维尔纳·冯·西门子共同创立了 PTR,并担任其第一任总裁。
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最值得关注的事件。 125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多名嘉宾出席,其中 240 名来自国外。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。该实验室于 1891 年首次投入使用,当时它可能是世界上最先进的物理实验室,建筑具有惊人的对称性和优雅性,同时提供了最强大的功能性,它是赫尔曼·冯·亥姆霍兹 (Hermann von Helmholtz) 的工作场所,他与维尔纳·冯·西门子共同创立了 PTR,并成为其第一任总裁。
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最值得关注的事件。 125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多名嘉宾出席,其中 240 名来自国外。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。该实验室于 1891 年首次投入使用,当时它可能是世界上最先进的物理实验室,建筑具有惊人的对称性和优雅性,同时提供了最强大的功能性,它是赫尔曼·冯·亥姆霍兹 (Hermann von Helmholtz) 的工作场所,他与维尔纳·冯·西门子共同创立了 PTR,并成为其第一任总裁。
07(045/046) 大众媒体。媒体。时间写作。新闻业。广播电视 1(045/046) 哲学。逻辑。方法论 159.9(045/046) 心理学 17(045/046) 伦理学 2(045/046) 宗教。神学 27(045/046) 基督教。基督教会 272(045/046) 天主教。罗马天主教会 3(045/046) 社会科学 30(045/046) 社会科学方法论。性别研究 311(045/046) 统计 314(045/046) 人口学。移民(移民。移民。流离失所。遣返) 316(045/046) 社会学 32(045/046) 政治学。 Poityka 322(045/046) 国家和教会。宗教政策 323/324(045/046) 内部政策。选举 323/324(438)(045/046) 波兰的内部政策。波兰选举 327(045/046) 外交政策。国际政策 327(4-67)(045/046) 欧盟政策 327(438)(045/046) 波兰外交政策 328(045/046) 议会。国家代表。政府 329(045/046) 政党和运动
参考:1。cho sf,Lin L,Xing L等。靶向BCMA靶向疗法:在多发性骨髓瘤中推动免疫疗法的新时代。癌症。2020; 12:1473。 doi:10.3390/cancers12061473 2。Cho SF,Anderson KC,Tai Yt。 靶向多发性骨髓瘤的B细胞成熟抗原(BCMA):基于BCMA的免疫疗法的潜在用途。 前疫苗。 2018; 9:1821。 doi:10.3389/fimmu.2018.01821 3。 Nadeem O,Tai YT,Anderson KC。 多发性骨髓瘤的免疫治疗和靶向方法。 免疫目标。 2020; 9:201-215。 doi:10.2147/itt.S240886 4。 Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。 多发性骨髓瘤中的 B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。 白血病。 2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。 Chim CS,Kumar SK,Orlowski RZ等。 对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。 白血病。 2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。Cho SF,Anderson KC,Tai Yt。靶向多发性骨髓瘤的B细胞成熟抗原(BCMA):基于BCMA的免疫疗法的潜在用途。前疫苗。2018; 9:1821。 doi:10.3389/fimmu.2018.01821 3。 Nadeem O,Tai YT,Anderson KC。 多发性骨髓瘤的免疫治疗和靶向方法。 免疫目标。 2020; 9:201-215。 doi:10.2147/itt.S240886 4。 Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。 多发性骨髓瘤中的 B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。 白血病。 2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。 Chim CS,Kumar SK,Orlowski RZ等。 对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。 白血病。 2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。2018; 9:1821。 doi:10.3389/fimmu.2018.01821 3。Nadeem O,Tai YT,Anderson KC。 多发性骨髓瘤的免疫治疗和靶向方法。 免疫目标。 2020; 9:201-215。 doi:10.2147/itt.S240886 4。 Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。 多发性骨髓瘤中的 B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。 白血病。 2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。 Chim CS,Kumar SK,Orlowski RZ等。 对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。 白血病。 2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。Nadeem O,Tai YT,Anderson KC。多发性骨髓瘤的免疫治疗和靶向方法。免疫目标。2020; 9:201-215。 doi:10.2147/itt.S240886 4。Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。白血病。2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。Chim CS,Kumar SK,Orlowski RZ等。对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。白血病。2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。2018; 32:252-262。 doi:10.1038/leu.2017.329 6。tai yt,安德森KC。将B细胞成熟抗原靶向多发性骨髓瘤。免疫疗法。2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。Caraccio C,Krishna S,Phillips DJ,SchürchCM。多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。:靶标,药物,临床试验和未来方向的综述。前疫苗。2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div>tai yt,Acharya C,An G等。血。clinicaltrials.gov。4月和BCMA在骨髓微环境中促进人类多发性骨髓瘤生长和免疫抑制。2016; 127:3225-3236。 doi:10.1182/Blood-2016-01-691162 9。 PF-06863135作为单一药物,并与免疫调节剂结合复发/难治性多发性骨髓瘤。 出版于2017年8月31日。 更新了2021年6月2日。 2021年6月25日访问。 clinicaltrials.gov/ct2/show/ nct03269136 10。 对多发性骨髓瘤的日本参与者的PF 06863135研究。 clinicaltrials.gov。 出版于2021年3月15日。 更新了2021年6月2日。 2021年6月25日访问。 clinicaltrials.gov/ct2/show/nct04798586 11。 Huehls AM,Coupet TA,Sentman CL。 双特异性T细胞诱因用于癌症免疫疗法。 免疫细胞生物。 2015; 93:290-296。 doi:10.1038/ ICB.2014.93 div>2016; 127:3225-3236。 doi:10.1182/Blood-2016-01-691162 9。PF-06863135作为单一药物,并与免疫调节剂结合复发/难治性多发性骨髓瘤。出版于2017年8月31日。更新了2021年6月2日。2021年6月25日访问。clinicaltrials.gov/ct2/show/ nct03269136 10。对多发性骨髓瘤的日本参与者的PF 06863135研究。clinicaltrials.gov。出版于2021年3月15日。更新了2021年6月2日。2021年6月25日访问。clinicaltrials.gov/ct2/show/nct04798586 11。Huehls AM,Coupet TA,Sentman CL。双特异性T细胞诱因用于癌症免疫疗法。免疫细胞生物。2015; 93:290-296。 doi:10.1038/ ICB.2014.93 div>2015; 93:290-296。 doi:10.1038/ ICB.2014.93 div>
1 德国海德堡大学曼海姆大学医学中心(UMM)医学院第一医学系,邮编 68167 曼海姆;rujia.zhong@medma.uni-heidelberg.de (RZ);schimanski.t@gmail.com (TS);feng.zhang@medma.uni-heidelberg.de (FZ);huan.lan@medma.uni-heidelberg.de 或 lh6402196@126.com (HL);alyssa.hohn@web.de (AH);qiang.xu@medma.uni-heidelberg.de (QX);mengying.huang@medma.uni-heidelberg.de (MH);zhenxing.liao@medma.uni-heidelberg.de (ZL);lin.qiao@medma.uni-heidelberg.de (LQ); zhen.yang@medma.uni-heidelberg.de (ZY); yingrui.li@medma.uni-heidelberg.de (YL); zhihan.zhao@medma.uni-heidelberg.de (ZZ); xin.li@medma.uni-heidelberg.de (XL); roselena1996@gmail.com (LR); sebastian9876@googlemail.com (SA); lasse-maywald@web.de (LM); jonasnelsonmueller@googlemail.com (JM); hendrik.dinkel@yahoo.de (HD); yannick.xi@medma.uni-heidelberg.de (YX); siegfried.lang@umm.de (SL); ibrahim.akin@umm.de (IA) 2 DZHK(德国心血管研究中心),合作伙伴网站,68167 曼海姆,德国; narasimha.swamy@mdc-berlin.de (NS); mandy.kleinsorge@gwdg.de (MK); sebastian.dieck@mdc-berlin.de (SD); lukas.cyganek@gwdg.de (LC) 3 西南医科大学心血管研究所,教育部医学电生理重点实验室,四川省医学电生理重点实验室,泸州 646000,中国 4 苏黎世大学心脏中心心脏病学系,Rämistrasse 100,8091 苏黎世,瑞士;ardan.saguner@usz.ch (AS); first.duru@usz.ch (FD) 5 海德堡大学人类遗传学研究所人类遗传学系,69120 海德堡,德国; johannes.jannsen@uni-heidelberg.de 6 马克斯·德尔布吕克分子医学中心,13125 柏林,德国 7 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,37075 哥廷根,德国 8 波鸿鲁尔大学贝格曼希尔大学医院,44789 波鸿,德国;ibrahim.elbattrawy2006@gmail.com * 通讯地址:xiaobo.zhou@medma.uni-heidelberg.de;电话:+49-621-383-1448;传真:+49-621-383-1474 † 这些作者对本文的贡献相同。‡ 这些作者为高级作者。
fi g u r e 1从植物中的全长cDNA克隆中拯救感染性玉米镶嵌病毒(MMV)。(a)PJL-MMV-WT,PTF-N&P和PJL-L-Lintron质粒的示意图。全长的MMV型质粒设计用于转录,以产生MMV抗原组RNA(AgRNA),并包含位于截短的CAMV Double 35S启动子(2×35s)和肝炎乙肝(RZ)rzl89 bjl89 bilary prinary prinary pharine pharione phinary phinary phinary phincy sequence之间的全长MMV cDNA。请注意,序列以抗原(mRNA)感显示。在PTF二进制质粒中的2×35s和35s终结序列之间插入了N和P的全长cDNA。L的全长cDNA与植物内含子ST-LS1插入2×35s和35S终结序列之间的植物内含子cDNA,在PJL89二元质粒中。(b)用含有PJL-MMV-GFP,PTF-N&P和PJL-L-INTRON质粒的农杆菌菌株的农杆菌菌株的示意图,并说明了PJL-MMV-GFP质粒构建。全长PJL-MMV-GFP包含重复的N/P基因连接,将MMV抗原组cDNA的N和P基因之间的GFP基因两侧。le,领导者; TR,拖车; Ter,终结者; TEV,烟草蚀刻病毒; LB,左边界序列; RB,右边界序列。(c)通过烟草本尼亚娜(Nicotiana Benthamiana)的MMV救援程序的例证,并转移到玉米和Peregrinus Maidis Planthoppers。dpi,接种后天。图1C:使用biore nder.com
该人现住址不详。邮局的投递尝试和对当前地址的调查均未成功。无法交付给代表(第 10 条)。1号1 VwZG)。应向上述自然人交付以下文件:15 日的退休证明。2023 年 2 月 14 日退休令。2023 年 2 月(AZ SB 3.10 Pers Neugebauer PersNr 60112759)上述文件和命令均根据第 10 条规定发布。1 张 VwZG,可凭上述有效照片身份证件公开领取本人或授权代表可前往以下地点领取或查看:德国联邦国防军人事管理办公室 斯图加特南部服务中心 Heilbronner Str.186 70191 Stuttgart 领取通知前,请联系: 办事员:Melanie Helmle +49 (0) 711 2540 – 2135 公共投递允许您§ 10 款2 句 3 VwZG 截止期限(例如法律救济期)启动,期满后存在丧失权利的风险。根据第 10 条规定,该文件有效。2 第 5 句 VwZG 如果自通知发布之日起已过去两周,则视为已公开送达。斯图加特,1.2023 年 3 月 代表 Becherer、RDir
