概述 量子信息科学 (QIS) 是一个快速发展的领域,旨在彻底改变计算和通信技术。本课程介绍量子力学的基本原理及其在量子信息科学中的应用。量子力学的实验和数学概念以量子比特或量子位的形式介绍,学生将学习如何使用量子位进行计算和通信。主题包括:波粒二象性、干涉测量和量子传感、自旋系统、原子跃迁和 Rabi 振荡、bra/ket 符号、量子通信和纠缠、量子计算和算法以及连续系统。主要目标是为量子信息科学和纳米电子学的高级课程提供概念和定量基础。
模式锁定是一种直接从激光振荡器获得短脉冲1 - 4的方法。这是一种常见且非常基本的技术,几乎用于现代光学的所有领域。典型的应用称为被动模式锁定(PML),通过将非线性(饱和)吸收器掺入激光腔中,可以实现。在这样的两部分腔中,由于放大器/吸收器截面的饱和,可以实现短脉冲的产生,因此脉冲持续时间τp大于放大器和吸收器切片中的极化松弛时间t 2。因此,在这种基于PML的激光器中,脉冲持续时间从根本上受到增益培养基1、2、5的逆带宽的限制。发生相反的情况,当腔中的电场如此强,以至于Rabi频率ωr
进一步耗尽地下水减少地下水补给并增强抽水以满足灌溉需求的原因使地下水进一步消耗了。例如,夏季季风干燥(近距离差异为10%–15%),其次是冬季的大量变暖(1-4°C的温度升高)将进一步加速地下水,通过增加(6% - 20%)灌溉用水需求,并减少了地下水的灌溉水分(6%)相互作用(6%–12%–12 –12 –12 –12 –12 –12),一位Tiwari。这种现象导致了严重的干旱条件,导致2002年至2021年之间的地下水损失。检查印度地下水对温暖气候的反应对于气候适应和确保食品和淡水安全至关重要,因为它导致季风(Kharif)和冬季(Rabi)季节的灌溉水需求增加。
近年来,涉及量子计算机的实验和混合模拟空前增加。特别是量子退火器。存在大量有望在不久的将来超越传统计算机的算法。在这里,我们提出了一种并行时间方法来模拟设计为在当今量子退火器上执行的动态系统。本质上,用于解决动态系统的纯经典方法是串行的。因此,它们的并行化受到很大限制。然而,在所提出的方法中,时间演化被重新表述为经典 Ising 模型的基态搜索。量子计算机本质上可以并行解决这样的问题。主要思想是通过实验模拟由两级量子系统(即量子比特)产生的 Rabi 振荡来举例说明的。
检测磁振子及其量子特性,尤其是在反铁磁 (AFM) 材料中,是实现纳米磁性研究和节能量子技术发展中许多雄心勃勃的进步的重要一步。最近基于超导电路的混合系统的发展为设计利用不同自由度的量子传感器提供了可能性。在这里,我们研究了基于二分 AFM 材料的磁振子-光子-传输子杂化,这导致了二分 AFM 中传输子量子比特和磁振子之间的有效耦合。我们展示了如何通过超导传输子量子比特的 Rabi 频率来表征磁振子模式、它们的手性和量子特性,例如二分 AFM 中的非局域性和双模磁振子纠缠。
摘要 - 近年来,人们对辣椒的种植和消费越来越兴趣,促使努力确定其成长和发展的最佳条件。本研究旨在评估生物刺激物对辣椒的生长和产量的影响。实验涉及十二种处理,包括绝对控制,并使用带有四个复制的随机块设计设计。潜在的假设表明生物刺激物可以提高胡椒果的产量。这项研究是在2022 - 23年和2023 - 24年的Rabi季节的CCS Haryana农业大学CCS Haryana农业大学的一家多屋进行的,使用PSM-1品种作为实验材料。结果表明,治疗t 3(RDF +海藻提取物2.5 mL/L)记录的最高植物高度(103.22 cm),叶面积(370.63cm²)和否。每植物的分支机构(11.63)。每植物的分支机构(11.63)。
图2。量子基础知识。(a)量子由两个量子状态组成| 0⟩和| 1⟩具有能量差e。(b)当在ω01= e /ℏ时共鸣时,可以在|之间驱动量子状态。 0⟩和| 1⟩,包括|的线性组合0⟩和| 1⟩。(c)在CW谐振驾驶下,Qubit状态发生所谓的Rabi振荡,其中概率| α0| 2和| α1| 2随着时间的及时进化。(d)在频率ω01(噪声温度t b,阻抗z b)偶联质量因子q处耦合到频率质量因子q在时间尺度t 1上导致量子状态转变。如果k b t b≪ω01,这些过渡将由|占主导地位。 1⟩→| 0⟩过程。(e)如果可以通过环境参数λ移动量子频率(例如,磁场),λ中的闪光在ω01中引起浮动,从而在时间尺度Tφ上删除了量子状态。
在初级原子铯喷泉钟的不确定性预算中,对超精细时钟跃迁的频率牵引偏移的评估,迄今为止都是基于为铯束钟开发的方法,这种偏移是由其附近跃迁的意外激发(拉比和拉姆齐牵引)引起的。我们重新评估了喷泉钟中的这种频率牵引,并特别关注了初始相干原子态的影响。我们发现,由于亚能级粒子数不平衡和初始原子基态的状态选择超精细分量中的相应相干性,拉姆齐牵引导致的频率偏移显著增强。在原子喷泉钟中对此类偏移进行了实验研究,并证明了与模型预测的定量一致性。
[1] d 级系统中的增强容错量子计算,ET Campbell,Phys. Rev. Lett. 113,230501 (2014)。[2] 使用量子 Reed-Muller 码在所有素数维度中进行魔法状态蒸馏,ET Campbell 等人,Phys. Rev. X 2,041021 (2012)。[3] 来自绝对最大纠缠态的最佳量子纠错码,Z. Raissi 等人,J. Phys. A: Math. Theor. 51 075301 (2018) [4] 通过 qutrits 对量子电路进行渐近改进,P. Gokhale 等人,ISCA '19,554–566 (2019)。 [5] 大约瑟夫森结量子比特中的拉比振荡,JM Martinis 等人,Phys. Rev. Lett. 89, 117901 (2002)。
摘要:本文介绍了一种新颖的编码方案,该方案允许单个量子系统对多量子比特寄存器进行编码。这可以更有效地利用资源,并在设计量子系统时节省成本。该方案基于使用通过在半导体材料中引入杂质形成的离散能谱的电荷自由度来编码逻辑量子态的概念。我们提出了一种执行单量子比特操作和受控双量子比特操作的机制,提供了一种使用由 Rabi 振荡产生的适当脉冲来实现这些操作的机制。使用 IBM 的 Armonk 单量子比特量子计算机模拟上述架构,将两个逻辑量子态编码为 Armonk 量子比特的能量态,并使用自定义脉冲执行一量子比特和两量子比特量子操作。
