相关性溶血磷脂酸 (LPA) 受体 (PubMed:9070858, PubMed:19306925, PubMed:25025571, PubMed:26091040)。在肌动蛋白细胞骨架重组、细胞迁移、分化和增殖中发挥作用,从而有助于对组织损伤和感染因子的反应。通过异源 G 蛋白的 G(i)/G(o)、G(12)/G(13) 和 G(q) 家族激活下游信号级联。信号抑制腺苷酸环化酶活性并降低细胞 cAMP 水平 (PubMed:26091040)。信号传导触发细胞质 Ca(2+) 水平的增加 (PubMed:19656035, PubMed:19733258, PubMed:26091040)。激活 RALA;这导致磷脂酶 C (PLC) 的激活和肌醇 1,4,5-三磷酸的形成 (PubMed:19306925)。信号传导介导下游 MAP 激酶的激活 (通过相似性)。有助于调节细胞形状。促进神经元细胞中肌动蛋白细胞骨架的 Rho 依赖性重组和神经突回缩 (PubMed:26091040)。促进 Rho 的激活和肌动蛋白应力纤维的形成 (PubMed:26091040)。通过激活 RAC1 促进迁移细胞前缘板状伪足的形成(通过相似性)。通过其作为溶血磷脂酸受体的功能,在趋化性和细胞迁移中发挥作用,包括对损伤和创伤的反应(PubMed:18066075,PubMed:19656035,PubMed:19733258)。通过与 CD14 相互作用,在引发对细菌脂多糖 (LPS) 的炎症反应中发挥作用。促进对溶血磷脂酸的细胞增殖。正常骨骼发育所必需的。可能在成骨细胞分化中发挥作用。正常大脑发育所必需的。成人齿状回中新形成的神经元正常增殖、存活和成熟所必需的。在疼痛感知和神经性疼痛的引发中发挥作用(通过相似性)。
背景:多囊卵巢综合征 (PCOS) 影响着全球育龄妇女,发病率为 5% - 26%。越来越多的证据表明,微小 RNA (miRNA) 在 PCOS 的颗粒细胞 (GC) 病理生理中发挥着重要作用。目的:本研究的目的是通过分析三个不同的微阵列数据集,确定枢纽基因-miRNA 网络中差异表达最显著的 miRNA (DE-miRNA) 及其相应的靶标,并识别新的 DE-miRNA。此外,还使用生物信息学方法进行了功能富集分析。最后,研究了排名前 5 位的枢纽基因与药物之间的相互作用。方法:使用生物信息学方法,分析了基因表达总集 (GEO) 中的三个 GC 谱,即基因表达总集系列 (GSE)-34526、GSE114419 和 GSE137684。使用 multiMiR R 包预测排名靠前的 DE-miRNA 的靶标,并且仅检索具有验证结果的 miRNA。将“DE-miRNA 预测结果”和“现有组织 DE-mRNA”之间共同的基因指定为差异表达基因 (DEG)。对 DEG 实施了基因本体 (GO) 和通路富集分析。为了识别枢纽基因和枢纽 DE-miRNA,使用 Cytoscape 软件构建了蛋白质-蛋白质相互作用 (PPI) 网络和 miRNA-mRNA 相互作用网络。利用药物-基因相互作用数据库 (DGIdb) 数据库来识别排名靠前的枢纽基因与药物之间的相互作用。结果:从 GSE114419 和 GSE34526 微阵列数据集中检索到的前 20 个 DE-miRNA 中,只有 13 个通过 multiMiR 预测方法具有“验证结果”。在研究的 13 个 DE-miRNA 中,只有 5 个,即 hsa-miR-8085 、 hsa-miR-548w 、 hsa-miR-612 、 hsa-miR-1470 和 hsa-miR-644a,与我们研究中的枢纽基因-miRNA 网络中的 10 个枢纽基因表现出相互作用。除 hsa-miR-612 外,其他 4 个 DE-miRNA,包括 hsa-miR-8085 、 hsa-miR-548w 、 hsa-miR-1470 和 hsa-miR-644a ,都是新发现的,之前尚未在 PCOS 发病机制中报道过。此外,GO 和通路富集分析将京都基因和基因组百科全书 (KEGG) 中的“致病性大肠杆菌感染”和 FunRich 中的“调节 Rac1 活性”确定为主要通路。药物中心基因相互作用网络确定 ACTB 、 JUN 、 PTEN 、 KRAS 和 MAPK1 是使用治疗药物治疗 PCOS 的潜在靶点。结论:本研究结果可能有助于研究人员发现 PCOS 治疗中的新生物标志物和潜在治疗药物靶点。
网站:https://www.empa.ch/web/s403/particlesbarrier https://scholar.google.ch/citations?user=cH5X5vAAAAAJ&hl=en OrcID:0000-0003-3723-6562 专业经历 2015 年 1 月至今 粒子@Barriers 小组组长和粒子-生物相互作用实验室副主任,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑 2012 年 5 月 - 2014 年 12 月 研究助理,材料-生物相互作用实验室,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑,导师:P. Wick 博士 2008-2012 博士后研究员,材料-生物相互作用实验室,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑,导师:HF Krug 博士 教育经历 2002-2006 博士,瑞士苏黎世瑞士联邦理工学院 (ETH) 细胞生物学研究所 博士论文:“脊椎动物神经系统髓鞘形成研究:cdc42、rac1 和 profilin 1 信号在少突胶质细胞和施万细胞生物学中的作用” 导师:U. Suter 教授、ME Schwab 教授、J. Relvas 博士 1998-2002 自然科学硕士ETHZ,瑞士苏黎世联邦理工学院 (ETH) 毕业论文:“肌浆网蛋白与肌酸激酶相互作用的表征” 导师:T. Wallimann 教授、T. Hornemann 博士 1994-1998 年 赫尔布鲁格康顿学院,瑞士赫尔布鲁格 毕业(Matura Type E:经济学) 研究资助 2020-2023 年 欧盟旗舰石墨烯 (Core3 阶段) 共同申请人(1.5 亿欧元/55 万欧元) 2018-2021 年 SNSF- 胎盘介导的纳米材料风险 PI(260 kCHF) 2018-2020 年 欧盟旗舰石墨烯 (Core2 阶段) 共同申请人(8800 万欧元/350 (230 kCHF) 2014-2017 BMBF- NanoUmwelt 共同申请人 (1.8 M€ / 180 k€) 2013-2017 第 7 届 FP EU Nanosolutions ( NMP .2012.1.3-1 ) 共同申请人 (10 M€ / 290 k€) 学生监督 (* 共同监督) Claudia Rust* (ETH, 硕士论文, 2003), Carina Muoth (ETH, 硕士论文, 2012), Erminio Di Renzo (ETH, 硕士论文, 2018), Angela Diaz (Uni Castilla-La-Mancha, 硕士论文, 2021), Lukas Schlagenhauf* (ETH, 博士论文, 2011-2015), Carina Mouth (UZH, 博士论文, 2013-2016), Leonie Aengenheister(ETH,博士生,2015-2018 年)、Claudia Hempt(ETH,博士论文,2017-2020 年)、Daria Korejwo(UNIFR,博士生,2017-2020 年)、Woranan Netkeakul*(ETH,博士生,2017 年至今)、Lea Furer(ETH,博士生,2018 年 10 月开始)、Battuja Batbajar Dugershaw(ETH,博士生,2018 年 10 月开始)、Julia Boos*(ETH,博士生,2019 年至今) 教学/课程 讲座 福拉尔贝格应用技术大学:微纳米技术硕士课程(被公认为奥地利最好的技术学位课程)2010-2011 年
