背景:随着 COVID-19 负担的加重,快速可靠的筛查方法势在必行。胸部 X 光片在快速分诊患者方面起着关键作用。不幸的是,在资源匮乏的环境中,训练有素的放射科医生很少。目的:本研究评估并比较人工智能 (AI) 系统与放射科医生在检测 COVID-19 胸部 X 光片发现方面的表现。受试者和方法:测试集包括三个月内 457 张疑似 COVID-19 肺炎患者的 CXR 图像。一位拥有 13 年以上经验的放射科医生和人工智能系统 (NeuraCovid,一款与人工智能模型 COVID-NET 配对的 Web 应用程序) 对 X 光片进行了评估。通过计算灵敏度、特异性和生成受试者工作特征曲线来比较人工智能系统和放射科医生的表现。RT-PCR 测试结果被用作金标准。结果:放射科医生的灵敏度和特异性分别为 44.1% 和 92.5%,而 AI 的灵敏度和特异性分别为 41.6% 和 60%。AI 系统将 CXR 图像正确分类为 COVID-19 肺炎的曲线下面积为 0.48,放射科医生为 0.68。放射科医生的预测优于 AI,P 值为 0.005。结论:放射科医生检测 COVID-19 肺部病变的特异性和灵敏度优于 AI 系统。
随着全球气候变化的影响逐年加剧,关于太阳辐射改造(SRM)的讨论——通过提高地球对太阳光的反射率来对全球气候系统进行大规模的、人为的操控——正日益成为延缓气候变化的潜在机制。关于SRM相关技术的讨论大多集中在北半球国家,但SRM对南半球国家也具有重要意义,而且那里国家的兴趣也日益浓厚。自2019年以来,作者们一直在南半球国家直接参与SRM研究,参与了与该领域发展相关的研究、研讨会和其他活动,同时也致力于巴基斯坦气候和环境问题的科学和治理工作。本政策简报是2024年1月在巴基斯坦伊斯兰堡举办的一次培训研讨会的成果,在研讨会上,作者们就与巴基斯坦国情相关的SRM问题进行了探讨。作者们概述了SRM面临的治理挑战,并为巴基斯坦气候界成员、民间社会组织以及政策制定者和决策者提供了一个初步框架,帮助他们参与目前已在进行的SRM全球讨论。最后,作者就国家应如何考虑参与这些即将采取的气候干预措施提出了建议。
1植物生物技术针对食品和农业集团(Biovega2),cat o lica o lica san Antonio de Murcia,Avenida de los Jer o jer o Nimos 135,Guadalupe,30107 Murcia,西班牙; ralonso@ucam.edu(r.a.-s.); agonzalez@ucam.edu(A.G.-B。); ajperez@ucam.edu(A.J.P.-L。); jracosta@ucam.edu (J.R.A.-M) 2 Plant Biotechnology, Agriculture and Climate Resilience Group, Ucam-Cesic, Associated Unit to Csic by Cebas-Csic, DP, 30100 Murcia, Spain 3 Research Group “Food Quality and Safety”, Innovaci Ó n Agroalimentaria Y Agroambiental (Ciagro-AMH), Miguel Hern á NDEZ大学,Carretera de Beniel,KM 3.2,03312 Orihuela,西班牙; lnoguera@umh.es(l.n.-a.); angel.carbonell@umh.es(Á.C.-B。)4分子识别和封装组(REM),UCAM UNIVERDAD CAT O LICA DE MURCIA,AVENIDA de LOS JER O O NIMOS 135,Guadalupe,30107 Murcia,西班牙; enunez@ucam.edu *通信:slmiranda@ucam.edu
生成的神经辐射场(NERF)通过学习一组未经未介绍的图像的分布来综合多视图图像,表现出非常熟练的熟练程度。尽管现有的生成nerf具有在数据分布中生成3D一致的高质量随机样本的才能,但创建单数输入图像的3D表示仍然是一个巨大的挑战。在此手稿中,我们介绍了Zignerf,这是一种创新的模型,该模型执行零击生成的对抗网(GAN)倒置,以从单个脱离分布图像中生成多视图。该模型的基础是一个新型逆变器的基础,该逆变器映射到了发电机歧管的潜在代码中。毫无意义,Zignerf能够将对象从背景中解散并执行3D操作,例如360度旋转或深度和水平翻译。使用多个实数数据集对我们的模型的效率进行验证:猫,AFHQ,Celeba,Celeba-HQ和Compcars。
● 电气工程、物理学、航空航天工程或相关领域的硕士学位或更高学位。 ● 具有雷达系统工程经验,尤其是脉冲相控阵技术。 ● 具有数字信号处理、射频/微波工程和天线设计方面的丰富背景。 ● 具有使用雷达仿真和分析软件工具(如 MATLAB、ANSYS 或类似软件)的经验。 ● 熟悉太空环境挑战,包括辐射对电子系统的影响。 ● 具有出色的分析、解决问题以及沟通和谈判技巧。 ● 能够在全球团队中协同工作并在最低限度的监督下管理项目。 ● 愿意根据需要出差
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
发现一项开创性的计划,为库克群岛风景如画的 Vaimaanga 注入了新的活力。拟议的抽水蓄能计划旨在利用可再生太阳能作为驱动力,恢复池塘系统。水从宁静的池塘抽到高出约 70 米的高架储水箱,见证水转化为清洁、可持续的能源。在晚上能源需求高峰期,水库将通过涡轮机释放水,产生与环保和气候意识相呼应的电力。在气候变化的紧迫挑战中,这个富有远见的项目提供了一盏希望的灯塔,与我们减少温室气体排放和摆脱传统化石燃料的共同目标完美契合。踏上通往更绿色、更可持续未来的旅程,这项非凡的努力展示了自然与技术和谐相处的美丽。
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
