背景:随着 COVID-19 负担的加重,快速可靠的筛查方法势在必行。胸部 X 光片在快速分诊患者方面起着关键作用。不幸的是,在资源匮乏的环境中,训练有素的放射科医生很少。目的:本研究评估并比较人工智能 (AI) 系统与放射科医生在检测 COVID-19 胸部 X 光片发现方面的表现。受试者和方法:测试集包括三个月内 457 张疑似 COVID-19 肺炎患者的 CXR 图像。一位拥有 13 年以上经验的放射科医生和人工智能系统 (NeuraCovid,一款与人工智能模型 COVID-NET 配对的 Web 应用程序) 对 X 光片进行了评估。通过计算灵敏度、特异性和生成受试者工作特征曲线来比较人工智能系统和放射科医生的表现。RT-PCR 测试结果被用作金标准。结果:放射科医生的灵敏度和特异性分别为 44.1% 和 92.5%,而 AI 的灵敏度和特异性分别为 41.6% 和 60%。AI 系统将 CXR 图像正确分类为 COVID-19 肺炎的曲线下面积为 0.48,放射科医生为 0.68。放射科医生的预测优于 AI,P 值为 0.005。结论:放射科医生检测 COVID-19 肺部病变的特异性和灵敏度优于 AI 系统。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
辐射系统包括压力,温度和湿度传感器,并通过传输电子设备互补。风是根据上升速度和空气密度计算的。作为上空实践的关注,世界气象组织为用于推导这些参数的工具设定了准确性要求和性能限制。必须测量压力的精度+/- 1 Mb(1 Mb = 1 HPA),温度为+/-的精度。5摄氏度,相对湿度为+/- 5%。1989年对1980年代在美国使用的几种辐射模型的测试显示,测量的压力约为+/- 2 MB,温度的准确度为+/- 0.3摄氏度的精度,相对湿度的准确性为+/- 2%。(Elliott and Gaffen 1991)。
3。安装和验证用于回程网络的硬件组件并优化设备(回程网络提供了每个塔楼和核心网络之间的连接); 4。在三个位置安装新的备份发电机,以确保功率故障期间继续覆盖; 5。新系统的压力测试和调试; 6。为所有消防和公共工程部门编程寻呼机和收音机; 7。与加拿大的创新,科学和经济发展协调,以根据新系统更新许可证; 8。提供培训和井井有条的图纸;和9。安排,监督和协调拆除现有县塔。
[ 1] 疾病控制与预防中心。(2020 年 12 月 7 日)。3D 打印工作安全。疾病预防控制中心。[2] Rooney, M. K., Rosenberg, D. M., Braunstein, S., Cunha, A., Damato, A. L., Ehler, E., Pawlicki, T., Robar, J., Tatebe, K., & Golden, D. W. (2020)。放射肿瘤学中的三维打印:文献系统综述。应用临床医学物理学杂志,21(8),15–26 [3] 太空 3D 打印。Aniwaa。(2021 年 8 月 5 日) [4] 原装 Prusa i3 MK3S+ 3D 打印机图片。(n.d.)。Prusa 3D。检索日期:2023 年 8 月 1 日 [5] 艺术家对地球磁层的演绎。(2007)。欧洲航天局。检索日期:2023 年 8 月 1 日 [6] Sherwin Emiliano。(2021 年 6 月 20 日)。[2021] 3D 打印机灯丝多少钱?MonoFilament DIRECT [7] P., M. (2022 年 8 月 8 日)。Pla 与 PETG:您应该选择哪种材料?3Dnatives [8] 文件:polylactid sceletal.svg。Wikimedia Commons。(n.d.-b) [9] 文件:Polyethyleneterephthalate.svg。Wikimedia Commons。(n.d.-a) [10] Junaedi, H., Albahkali, E., Baig, M., Dawood, A., & Almajid, A.(2020)。短碳纤维增强聚丙烯复合材料的延性至脆性转变。聚合物技术进展,2020 年,1-10 [11] https://www.worldoftest.com/electro-mechanical-dual-column-universal-testing-machine-qm-100200300500。(n.d.)。Qualitest。2023 年 8 月 3 日检索 [12] Wady, Paul, et al.“电离辐射对 3D 打印塑料的机械和结构性能的影响。” Additive Manufacturing,vol.31,2020,第 100907 页
电离辐射计量中心摘要。放射性核素中子源为各种中子测量装置提供了一种产生标准中子校准场的便捷方法。需要知道源的以下属性才能表征某一点的场:总中子发射率、中子能谱以及发射强度随角度的变化。假设光谱随角度的变化对于大多数应用而言可以忽略不计。放射性核素中子源的总发射率可以在国家物理实验室 (NPL) 通过硫酸锰浴技术绝对测量,或通过慢化探测器进行比较测量。各种常用源的中子能谱可在公开文献中找到。本报告描述了 NPL 用于测量放射性核素中子源各向异性发射的方法。给出了相对于各种源类型和封装的圆柱轴的测量中子角分布。还给出了使用蒙特卡洛传输代码 MCNP 计算的分布,这些分布通常与测量的分布具有良好的一致性。
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
3 医疗保健系统和医疗设备面临网络入侵风险增加以获取经济利益 (2014 年 4 月 8 日),FBI 网络部门私营行业通知(网址为 https://info.publicintelligence.net/FBI-HealthCareCyberInpulsion.pdf)(最后访问时间为 2023 年 3 月 14 日)。
摘要:靶向放射性核素治疗 (TRT) 的概念是准确有效地将辐射传送到播散性癌症病变,同时最大限度地减少对健康组织和器官的损害。成功开发用于 TRT 的新型放射性药物的关键方面是:i) 识别和表征癌细胞上表达的合适靶点;ii) 选择对癌细胞相关靶点表现出高亲和力和选择性的化学或生物分子;iii) 选择衰变特性与靶向分子特性和临床目的相符的放射性核素。瑞士保罗谢勒研究所的放射性药物科学中心 (CRS) 享有优越的地理位置,靠近独特的放射性核素生产基础设施(高能加速器和中子源),并可使用 C/B 型实验室,包括临床前、核成像设备和瑞士医药认证实验室,用于制备供人类使用的药物样品。这些有利条件允许生产非标准放射性核素,探索其生化和药理学特征以及对肿瘤治疗和诊断的影响,同时研究和表征新的靶向结构并优化这些方面以进行放射性药物的转化研究。通过与瑞士各临床合作伙伴的密切合作,最有前途的候选药物被转化为临床用于“首次人体”研究。本文通过介绍一些选定的项目,概述了 CRS 在 TRT 领域的研究活动。
放射栓塞术 (RE),也称为选择性内放射治疗 (SIRT),近年来逐渐被引入到临床的细胞减灭术中。越来越多的证据表明,RE 对各种实体的肝脏肿瘤有效,其中最突出的是肝细胞癌、结直肠癌和神经内分泌肿瘤。许多其他肿瘤实体(包括乳腺癌、胆管癌和胰腺癌)的肝转移对治疗敏感,即使对其他治疗方式(如温和栓塞、区域或全身化疗)有抵抗力。SIRT 的抗肿瘤作用与放射有关,而不是栓塞,在存活肿瘤部位选择性地获得极高的局部放射剂量,对周围正常肝组织的影响很小。RE 后的形态学变化可能会给传统的重新分期解释肿瘤活力和对治疗的真实反应带来困难。因此,功能成像,即对大多数接受治疗的肿瘤进行 18 F 氟脱氧葡萄糖正电子发射断层扫描 (计算机断层扫描) 代谢成像,被视为这方面的黄金标准,应纳入 SIRT 前后评估。为防止与强效抗肿瘤功效相关的严重毒性,细致的治疗前评估尤为重要。预测剂量的改进将有助于优化治疗和患者选择。核医学程序对于 RE 的计划、执行和监测至关重要。然而,对于这种特殊的治疗形式,必须强调患者管理的跨学科方面。随着 SIRT 从抢救指征发展到肝肿瘤疾病早期阶段的使用,以及新治疗方案和靶向疗法的出现,将 SIRT 嵌入多学科方法将变得更加重要。本文重点介绍治疗的选择、准备和执行以及治疗后监测和反应评估的程序和技术方面。Semin Nucl Med 40:105-121 © 2010 Elsevier Inc. 保留所有权利。
