摘要 - 分配系统中安装在分配系统中的Battery储能系统(BESS)和太阳能电动汽车(PV)逆变器源通常旨在提高系统的弹性。这些来源可以通过增加和保持服务的连续性,同时在高需求期间提供剃须能力,从而补充大量电力系统。在配置用于与下垂(GFMD)特性的网格形成时,可以设计为可调节能源,以支持往返岛屿条件的无缝过渡,而无需更改模式,没有中断。通过分布公用事业部署的传统保护方案使用倒数过时的元素(51)来协调网络中的保护设备,例如保险丝,隐居器和断路器。在具有基于逆变器的来源的岛屿系统中,由于可用故障电流量有限,因此需要修改此保护方案。逆变器(BESS和PV)由于其切换设备的热量考虑,其短路能力受到限制,从而有效地使逆变器成为系统故障的当前限制源。结果是,逆变器不作为传统来源,而保护性继电器计划必须适应有限的断层电流贡献。作者评估了用BESS作为能源供应的分配变电站的岛化操作。实时数字仿真和硬件中的结果(HIL)测试产生了一种简单的确定时间过电流协调方法,并具有标准的保护性继电器元素,以保护分配馈线。为了在网格和岛屿运行期间成功运行,继电器需要在系统被网格且确定的时间过电流协调的同时区分时间过电流的协调性。根据创新的频率移动方法启用了保护性继电器元素,以避免需要保护级的通信渠道。在岛状条件下,一种负载方案为系统提供了额外的弹性和稳定性,同时改善了连接负载的服务连续性。本文讨论了基于逆变器的能源在分配系统中的使用,这些来源的故障当前贡献,岛岛操作期间的保护性继电器解决方案,在岛状条件下的负载拆料方案以及检测开源条件(在常见耦合[PCC]的上游[PCC]的上游上游)。所有讨论点都用示例说明。
军事用户的新需求推动了对专为恶劣环境设计的新型战术无线电的需求。雷迪埃拥有最完整的 RF 同轴无源产品系列,包括盒内和盒外 PCB 连接器、小直径电缆组件、微型开关和天线。此外,嵌入陆地车辆的最新一代对抗措施、雷达和光学吊舱系统需要高性能和坚固耐用的互连技术。
简介 超小型系列 超小型轴承包括 30 公制系列、33 和 S 英寸系列以及 F 法兰系列。这些轴承可承受与它们设计用于的小轴的承载能力成比例的径向、推力和组合载荷。它们适用于小功率电机、精密仪器、家用电器、电影放映机和类似设备。F 法兰系列具有外部肩部,轴承可安装在通孔轴承座中。此系列用于必须紧凑或无法加工轴承座肩部的场合。超小型系列的所有系列都包括屏蔽版本。30 公制系列还提供毛毡密封件、机械密封件和橡胶密封件,而 33 和 S 英寸系列则提供橡胶密封件。超小型系列中的某些尺寸由不锈钢制成。
简介 超小型系列 超小型轴承包括 30 公制系列、33 和 S 英寸系列以及 F 法兰系列。这些轴承可承受径向、推力和组合载荷,这些载荷与它们设计的小轴的承载能力成比例。它们适用于小马力电机、精密仪器、家用电器、电影放映机和类似设备。F 法兰系列具有外部肩部,轴承可安装在通孔外壳中。此系列用于紧凑性至关重要或无法加工外壳肩部的地方。超小型系列中的所有系列都包括屏蔽版本。30 公制系列还提供毛毡密封件、机械密封件和橡胶密封件,而 33 和 S 英寸系列则提供橡胶密封件。超小系列中的一些尺寸由不锈钢制成。
脑电图(EEG)的驾驶疲劳检测最近由于脑电图技术的非侵入性,低成本和可饮用的性质而引起了人们的关注,但是从嘈杂的EEG EEG信号中提取信息以驱动疲劳检测的嘈杂的EEG信号仍然具有挑战性。径向基函数(RBF)神经网络由于其线性参数网络结构,强大的非线性近似能力和所需的概括属性而吸引了很多注意力。RBF网络性能在很大程度上取决于网络参数,例如隐藏节点的数量,中心向量的数量,宽度和输出权重。但是,直接优化所有网络参数的全局优化方法通常会导致高评估成本和缓慢的收敛性。为了提高基于EEG的驱动疲劳检测模型的准确性和效率,本研究旨在开发两级学习层次结构RBF网络(RBF-TLLH),该网络(RBF-TLLH)允许对关键网络参数进行全局优化。在模拟驾驶环境中,在疲劳和警报状态下,在疲劳和警报状态下收集了实验性脑电图数据。首先利用主成分分析来从EEG信号中提取特征,然后使用拟议的RBF-TLLH用于驾驶状态(疲劳与警报)分类。结果表明,与其他广泛使用的人工神经网络相比,提出的RBF-TLLH方法实现了更好的分类性能(平均准确性:92.71%;接收器工作曲线下的面积:0.9199)。此外,只需要使用拟议的RBF-TLLH分类器中的培训数据集确定三个核心参数,这增加了其可靠性和适用性。发现表明,提出的RBF-TLLH方法可以用作可靠的基于EEG的驱动疲劳检测的有希望的框架。
自 2007 年以来,D-Lightsys ® 收发器一直在军用和商用飞机上使用,并已被证明是要求苛刻的应用的完美解决方案。新的 10+ G 系列采用 D-Lightsys ® 技术,并提供独特的优势,包括非常小的占用空间和扩展的链路预算,适用于需要长期数据传输可靠性的应用。低功耗使这些模块特别适合机载应用(飞机、无人机、卫星)。
连接对全世界人民的生活有着深远而巨大的影响。由于技术的进步,我们的生活比以往任何时候都更加便捷、更加安全、更加愉快和丰富。数据速度使最偏远地区的通信成为可能,因此人们可以到达全球各个角落,实现重要的国防和安全,并促进太空探索。但技术并非凭空而来。它始于头脑中的想法,以前所未有的方式实现连接。以前所未有的方式看待未来是创新的行为,它始于人们——发明家、梦想家、先驱者和工程师——丰富数十亿人的生活。在雷迪埃,我们有一个单一的使命;赋予人们权力,丰富我们的生活。通过提供可靠性和耐用性来促进他们的创新。在确定最佳成功途径时,向他们提供有用的信息和宝贵的指导。我们不是创造未来,而是创造未来。我们鼓励创新,接受挑战,挑战传统,与您合作取得成功。在雷迪埃,我们很自豪地说 – 我们最重要的联系就是与您。
轴 (1) 通过十字盘联轴器 (2) 将驱动扭矩无轴向力地传输到星形气缸体 (3)。气缸体由控制轴颈 (4) 静压支撑。气缸体中的径向活塞 (5) 通过静压平衡的滑靴 (6) 抵靠冲程环 (7)。活塞和滑靴通过球窝接头和锁紧环连接。滑靴由两个挡圈 (8) 引导进入冲程环,运行时通过离心力和油压抵靠在冲程环上。当气缸体旋转时,活塞由于冲程环的偏心定位而往复运动,活塞冲程是偏心距的两倍。偏心率由泵壳体内两个相对的控制活塞 (9、10) 改变。进出泵的油流通过泵端口,并通过控制轴颈中的端口进出活塞。这是通过控制轴颈中的进气口和压力缝隙来控制的。补偿器 (11) 监控系统压力和冲程环位置 (输送)。液压力不由滚柱轴承支撑。因此轴承在很大程度上不受负载。