摘要 自动机器翻译是科学界和各个科学学科领域中越来越受欢迎的研究课题,例如信息与通信科学、计算机科学、计算语言学等。其主要原因在于,如今它使得不同自然语言之间能够进行不可或缺的交流和快速的信息传递。这对于克罗地亚语等使用范围不广的语言尤其重要,因为该语言仍然缺乏开发针对特定领域使用进行优化的专业化高质量机器翻译系统所需的软件工具和数字资源。数据量的不断增长以及工业、经济、科学以及人们日常生活中各利益相关者日益增长的需求意味着需要系统化和组织地开发并随后适应不同语言对的自动机器翻译系统。由于机器翻译并不完美,因此应用可接受质量水平的计算机生成翻译的方法非常重要,这取决于任务本身和机器翻译系统的应用领域。本文分析了自动统计机器翻译系统的模型、其组成部分以及模型中各个元素的作用和意义。关键词:自动机器翻译;统计机器翻译模型;语言技术;自然语言处理;信息和通信科学。 1 简介 自动机器翻译技术是当今不可或缺的颠覆性技术之一,它极大地促进了自然语言文本翻译领域的业务流程的彻底转变。
摘要在未来的智能家居中,机器人有望处理日常任务,例如烹饪,取代人类的参与。为机器人自主获得此类技能是高度挑战的。因此,现有方法通过通过监督学习来控制真实的机器人和培训模型来解决此问题。但是,长途任务的数据收集可能非常痛苦。为了解决这一挑战,这项工作着重于从人类视频中生成动作序列的任务,展示了烹饪任务。通过现有方法为此任务而生成的动作序列的质量通常不足。这部分是因为现有方法不会有效地处理每个输入模式。为了解决此问题,我们提出了Avblip,这是一种用于生成机器人动作序列的多模式LLM模型。我们的主要贡献是引入多模式编码器,该编码器允许多种视频,音频,语音和文本作为输入。这使下一个动作的生成可以考虑到人类的语音信息和环境产生的音频信息。结果,在所有标准评估指标中,所提出的方法优于基线方法。
75) 乳房 X 线摄影发现亚临床乳腺病变。立体定位。 A. Blidaru、Cristian Bordea、C. Viisoreanu、A、Gociman、Operabele 乳腺癌研讨会,罗马尼亚锡比乌,2004 76) 乳房切除术后使用植入物进行乳房重建。 A. Blidaru,Cristian Bordea,C。Viisoreanu,O。Badea,Operabele乳腺癌研讨会,Sibiu,Romania,Romania,2004年77)乳腺癌的前哨淋巴结活检,A。Blidaru,Cristian Bordea,C.Viisoreanu,C。Viisoreanu,S.Voinea,S.Voinea,I.Condrea,P.Albert cancer,cancer cancer,p. albert cancer,s通过筛查乳房X线摄影,Cristian Bordea,C。Viisoreanu,S。Voinea,A。Blidaru,A。Blidaru,P。Neamt,Romania,2004 79)超声指导乳房活检,A。Blidaru,S。Nastasia,C。Posea,C。Viisisoreania,cockianiation and neamia,检测到了乳房的乳房病变原发性乳腺癌中的前哨淋巴结活检,Cristian Bordea,C。 Viisoreanu,S。Voinea,I。Condrea,A。Pall,XXIIND全国手术大会,罗马尼亚,2004年5月。81)肿瘤学研究所的乳腺癌淋巴结活检结果482)肿瘤学中的哨兵淋巴结概念,A。Blidaru,Cristian Bordea,S。Voinea,I。Condrea,A。Pall,A。Pall,C。Viisoreanu,IIIRD全国医学肿瘤学会议,康斯坦塔,罗马尼亚,2004年83) ,D。Jianu,国家肿瘤学会议,罗马尼亚布加勒斯特,2004年5月84) 使用放射性示踪剂对恶性黑色素瘤进行前哨淋巴结活检的技术,S. Voinea、Cristian Bordea、C. Viisoreanu、M. Popa、B. Houcheimi、H. Adnan、F. Radu、A. Pall、I. Condrea、A. Hurduc、R. Dumitriu、A. Blidaru,全国肿瘤学大会,罗马尼亚布加勒斯特,2004 年 5 月 85) 使用放射性示踪剂对原发性乳腺癌前哨淋巴结进行术中识别和切除活检,Cristian Bordea、C. Viisoreanu、S. Voinea、I. Condrea、A. Pall、M. Popa、H. Adnan、B. Aldea、M. Aldea、C. Saptefrati、S. Velicu、C. Jianu、A. Blidaru,全国肿瘤学大会,罗马尼亚布加勒斯特,2004 年 5 月
例如人工智能 (AI)、大数据分析、机器学习和区块链对管理和组织系统和实践的影响 (Tan and Taeihagh, 2021 ; Dickinson et al., 2021 ; Leiman, 2021 ; Radu, 2021 ; Taeihagh, 2021 ; Ulnicane et al., 2021 )。这些技术正在彻底改变现有的行政系统和实践,使其成为人与机器之间新型的互动,有时被称为算法官僚主义 (Vogl et al., 2020 ; Tan and Crompvoets, 2022 )。然而,由于组织内部和外部感知到的技术、系统、行政和监管障碍导致各种价值观保留,公共部门组织采用新的数字技术面临挑战(Tan 等人,2022 年;Bullock 等人,2020 年;Vogl 等人,2020 年;Tangi 等人,2021 年,Sun 和 Medaglia,2019 年)。公共管理研究已开始调查与系统应用人工智能和算法决策相关的挑战(Exmeyer 和 Hall,2022 年;Neumann 等人,2022 年)、问责机制(Busuioc,2021 年)、公民信任和决策的可解释性(Grimmelikhuijsen,2022 年)、组织重组(Meijer 等人,2021 年)、行政自由裁量权和实施意愿(Alshallaqi,2022 年;Wang 等人,2022 年)、道德原则和公民隐私(Willems 等人,2022 年)、能力差距和知识管理(Wilson 和 Broomfield,2022 年)。然而,这些新兴文献提供了如何在公共政策过程中整合人工智能和算法决策的零散图景。两种理论模型评估公共政策过程中的技术采用:行为模型通过分析用户对技术的感知和用户级特征的中介影响来解释技术采用过程,结构模型通过组织和机构因素与用户行为的相互作用来解释技术采用过程。这两种模型都侧重于用户的感知,但并没有提供整体视角来解释不同机构、组织、技术和个人层面驱动因素之间的感知关系及其对系统应用的影响(Dawes,2009;Engvall 和 Flak,2022)。这使得为公共政策过程中的人工智能和算法决策制定可行的数字化转型战略变得复杂。我们的具体研究问题是:本文旨在通过开发一个整体模型 1 来解决文献中的这一空白,该模型可以解释影响人工智能和算法工具在公共政策过程中整合的感知驱动因素之间的相互关系。具体来说,本研究重点关注税收和社会保障领域的欺诈检测案例,这些领域是使用机器学习和人工智能驱动的高级分析技术的主要政策领域。虽然这些技术有可能改进欺诈检测流程,但采购障碍、培训不足的工人、数据限制、缺乏技术标准、组织变革的文化障碍以及遵守负责任的人工智能原则的需要阻碍了它们的广泛采用 (West, 2021 )。
摘要:尽管执行了最佳药物治疗(OMT),但晚期心力衰竭(ZS)的特征是耐火症状和频繁再住院。 div>由于患有心血管疾病的危险因素和人口衰老的患者数量增加,末端ZS的div>越来越大,这是卫生保健系统的巨大临床挑战和负担。 div>预测是一种不良疾病,其死亡率为25%至75%。 div>鉴于OMT是一种有限的效果,在治疗此类患者时,考虑了涉及心脏移植和机械循环支持的先进治疗方法。 div>心脏移植是末端ZS的黄金标准,但是由于供体器官数量有限,并且存在某些禁忌症,因此将无法使用这种方法对患者进行治疗。 div>短期机械循环装置可用于治疗心源性休克和急性加剧,以恢复决策,恢复,孔孔或心脏移植的升级,恢复,升级。 div>长期左心室支撑装置被安装为倒带到心脏移植或作为永久意识到心脏移植的患者的目的地治疗。 div>充分使用心脏移植的主要挑战是捐助者的需求和外观之间的不成比例,这需要候选人的最佳排练以及资源的更好合理化。 div>对于成功的结果至关重要。 div>为时已晚,无法将这些患者转到移植中心进一步限制治疗选择。 div>尽管机械循环支持设备的技术取得了进步,但它们的全部潜力仍然有限,对右心室,欠发达的完整体内系统,平民或可及性以及安装后可能不需要的事件的足够长期支撑,例如通道,长号,长号,长号或出血。 div>在这项检查中,对终末Z患者的治疗挑战进行了综述,对疾病本身,药物治疗和使用晚期治疗方法的使用。 div>
6 Barseghyan, MG;Mughnetsyan, VN;Perez,;Kirakosyan, AA;Laroze, D 杂质对强 THz 激光场下 GaAs/Ga1-xAlxAs 量子环中 Aharonov-Bohm 振荡和带内吸收的影响 PHYSICA E-低维系统与纳米结构 卷:111 页:91-97 出版日期:2019 年 7 月,DOI:10.1016/j.physe.2019.03.003 WOS:000465001500012 7 Chakraborty, Tapash;Manaselyan, Aram; Barseghyan, Manuk,在 ZnO 界面处点环纳米结构中电子电荷和自旋分布的有效调整,PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 卷:99 页数:63-66 出版日期:2018 年 5 月,DOI:10.1016/j.physe.2018.01.013,WOS:000428346500009 8 Baghramyan, Henrikh M.;Barseghyan, Manuk G.;Kirakosyan, Albert A.; Ojeda, Judith H., (Bragard, Jean, Laroze, David 通过太赫兹激光场对双量子环各向异性特性的建模,SCIENTIFIC REPORTS 卷:8 文章编号:6145 出版日期:2018 年 4 月 18 日,DOI:10.1038/s41598-018-24494-w,WOS:000430279300003 9 Chakraborty, Tapash;Manaselyan, Aram;Barseghyan, Manuk;Laroze, David 单量子环中电子态的可控连续演化 PHYSICAL REVIEW B 卷:97 期:4 文章编号:041304 出版日期:2018 年 1 月 31 日,DOI:10.1103/PhysRevB.97.041304, WOS:000423656600001 10 Baghramyan, Henrikh M.; Barseghyan, Manuk G.; Laroze, David 强太赫兹辐射下横向耦合量子环的分子光谱 SCIENTIFIC REPORTS 卷:7 文章编号:10485 出版日期:2017 年 9 月 5 日,DOI:10.1038/s41598-017-10877-y,WOS:000409309300073 11 Chakraborty, Tapash;Manaselyan, Aram;Barseghyan, Manuk ZnO 界面处人造原子的相互作用驱动的独特电子态 JOURNAL OF PHYSICS-Condensed MATTER 卷:29 期:21 文章编号:215301 出版日期:2017 年 6 月 1 日,DOI: 10.1088/1361-648X/aa6b97,WOS:000400092400001 12 查克拉博蒂,塔帕什;马纳塞良,阿兰; Barseghyan,Manuk,ZnO 量子环中相互作用电子的不规则阿哈罗诺夫-玻姆效应《凝聚态物理学杂志》卷:29 期:7 文章编号:075605 发布时间:2 月 22 日,DOI:10.1088/1361-648X/aa5168, WOS:000391964700003 13 Barseghyan,MG;基拉科相,AA; Laroze, D., 激光驱动的二维量子点和量子环中的带内光学跃迁光通信卷:383 页:571-576 出版日期:2017 年 1 月 15 日,DOI:10.1016/j.optcom.2016.09.037,WOS:000386870700088 14 Laroze, D.; Barseghyan, M.; Radu, A.; (Kirakosyan, AA 二维量子点和量子环中的激光驱动杂质态 PHYSICA B-CONDENSED MATTER 卷:501 页:1-4 出版日期:2016 年 11 月 15 日,DOI:10.1016/j.physb.2016.08.008,WOS:000386815500001 15 Barseghyan, MG,单个量子环中的带内光吸收:静水压力和强激光场效应 OPTICS COMMUNICATIONS 卷:379 页:41-44 出版日期: 2016年11月15日 DOI: 10.1016/j.optcom.2016.05.065, WOS:000378770600008 7 Manaila-Maximean, D.; Cirtoaje,C.;达尼拉,O.; Donescu,D.新型胶体系统:磁铁矿-
[1] TSMC研究领域 /记忆。https://research.tsmc.com/page/memory/4.html。 [2] J. Abrell,M。Kosch和S. Rausch。 使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。 公共经济学杂志,169:172–202,2019。 [3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。 碳资源管理器:设计碳吸引数据中心的整体框架。 in proc。 Asplos,2023。 [4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://research.tsmc.com/page/memory/4.html。[2] J. Abrell,M。Kosch和S. Rausch。使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。公共经济学杂志,169:172–202,2019。[3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。碳资源管理器:设计碳吸引数据中心的整体框架。in proc。Asplos,2023。[4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。[4] Argonne国家实验室。问候。https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://greet.es.anl.gov,2022。[在线;访问30-May-20122]。[5] L. Barroso,J。Dean和U. Holzle。Web搜索一个星球:Google群集体系结构。IEEE Micro,23(2):22–28,2003。[6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。用于基于芯片的高级3D系统体系结构的主动插座技术。IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。[7] J.Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。计算机协会。Wu。在云实例中测量AI的碳强度。在2022年ACM公平,问责制和透明度会议上,FACCT '22,第1877- 1894页,纽约,纽约,纽约,2022年。[8] H. M. El-Houjeiri,A。R。Brandt和J. E. Duffy。使用现场特征估算原油生产中的温室气体排放的开源LCA工具。环境科学技术,47 11:5998–6006,2013。[9] S. Fan,S。Zahedi和B. Lee。计算冲刺游戏。Asplos,2016年。[10] X.粉丝,W.-D。韦伯和L. Barroso。仓库比例计算机的功率供应。在ISCA,2007年。 [11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。 ICT的真正气候和变革性影响:对估计,趋势和法规的批评。 模式,2(9),2021。 [12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。 神经机器翻译的缩放定律。 在国际学习表征会议上,2022年。 [13] K. Gillingham,D。Rapson和G. Wagner。 反弹效应和能源效率政策。 审查环境经济与政策,2016年10月1日。 [14] U. Gupta,M。Elgamal,G。Hills,G.Y。 Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。在ISCA,2007年。[11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。ICT的真正气候和变革性影响:对估计,趋势和法规的批评。模式,2(9),2021。[12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。神经机器翻译的缩放定律。在国际学习表征会议上,2022年。[13] K. Gillingham,D。Rapson和G. Wagner。反弹效应和能源效率政策。审查环境经济与政策,2016年10月1日。[14] U. Gupta,M。Elgamal,G。Hills,G.Y。Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。Wei,H.-H。 S. Lee,D。Brooks和C.-J。ACT:使用建筑碳建模工具设计可持续的计算机系统。在ISCA,2022年。[15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y.Wei,D。Brooks和C. J. Wu。追逐碳:计算的难以捉摸的环境足迹。在HPCA中,2021年。[16] G. Hardin。公地的悲剧。Science,162(3859):1243–1248,1968。[17] G. Hills,M。García-Bardón,G。Doornbos,D。Yakimets,P。Schuddinck,R。Baert,D。Jang,L。Mattii,S。M。M. Y. Sherazi,D.Rodopoulos,D.Rodopoulos,R.RiTzenthaler,C.S. Lee,A。V.-Y.Thean,I。Radu,A。Spessot,P。Bebacker,F。Catthoor,P。Raghavan,M。Shulaker,H.-S。 P. Wong和S. Mitra。了解数字VLSI的碳纳米管现场效应晶体管的能效益处。IEEE纳米技术交易,17(6):1259–1269,2018年9月。
海湾。第 2 部分:评估气候变化驱动的沿海灾害和社会经济影响的工具。J Mar Sci Eng 6(3)。https://doi.org/10.3390/jmse6030076 Erikson LH、Herdman L、Flahnerty C、Engelstad A、Pusuluri P、Barnard PL、Storlazzi CD、Beck M、Reguero B、Parker K (2022) 在预计的 CMIP6 风和海冰场的影响下,使用全球尺度数值波浪模型模拟的海浪时间序列数据:美国地质调查局数据发布。 https://doi.org/10.5066/P9KR0RFM Esch T、Heldens W、Hirner A、Keil M、Marconcini M、Roth A、Zeidler J、Dech S、Strano E(2017 年)在从太空绘制人类住区地图方面取得新突破——全球城市足迹。ISPRS J Photogramm Remote Sens 134:30–42。 https://doi.org/10.1016/j.isprsjprs.2017.10.012 Florczyk AJ、Corbane C、Ehrlich D、Freire S、Kemper T、Maffenini L、Melchiorri M、Pesaresi M、Politis P、Schiavina M、Sabo F、Zanchetta L(2019)GHSL 数据包 2019。在:欧盟出版物办公室,卷 JRC117104,7 月期。https://doi.org/10.2760/290498 Giardino A、Nederhoff K、Vousdoukas M(2018)小岛屿沿海灾害风险评估:评估气候变化和减灾措施对埃贝耶(马绍尔群岛)的影响。 Reg Environ Change 18(8):2237–2248。https://doi.org/10.1007/s10113-018-1353-3 Gonzalez VM、Nadal-Caraballo NC、Melby JA、Cialone MA(2019 年)概率风暴潮模型中不确定性的量化:文献综述。ERDC/CHL SR-19–1。密西西比州维克斯堡:美国陆军工程兵研究与发展中心。https://doi.org/10.21079/11681/32295 Gori A、Lin N、Xi D(2020 年)热带气旋复合洪水灾害评估:从调查驱动因素到量化极端水位。地球的未来 8(12)。 https://doi.org/10.1029/2020EF001660 Guo Y、Chang EKM、Xia X (2012) CMIP5 多模型集合投影全球变暖下的风暴轨道变化。J Geophys Res Atmos 117(D23)。https://doi.org/10.1029/2012JD018578 Guo H、John JG、Blanton C、McHugh C (2018) NOAA-GFDL GFDL-CM4 模型输出为 CMIP6 ScenarioMIP ssp585 准备。下载 20190906。地球系统网格联盟。 https://doi.org/10. 22033/ESGF/CMIP6.9268 Han Y, Zhang MZ, Xu Z, Guo W (2022) 评估 33 个 CMIP6 模型在模拟热带气旋大尺度环境场方面的表现。Clim Dyn 58(5–6):1683–1698。https://doi.org/ 10.1007/s00382-021-05986-4 Hauer ME (2019) 按年龄、性别和种族划分的美国各县人口预测,以控制共同的社会经济路径。科学数据 6:1–15。 https://doi.org/10.1038/sdata.2019.5 Hersbach H、Bell B、Berrisford P、Hirahara S、Horányi A、Muñoz-Sabater J、Nicolas J、Peubey C、Radu R、Schepers D、Simmons A、Soci C、Abdalla S、Abellan X、Balsamo G、Bechtold P、Biavati G、Bidlot J, Bonavita M 等人 (2020) ERA5 全局再分析。 QJR Meteorol 协会。 https://doi.org/10.1002/qj. 3803 Homer C,Dewitz J,Jin S,Xian G、Costello C、Danielson P、Gass L、Funk M、Wickham J、Stehman S、Auch R、Riitters K (2020) 来自 2016 年国家土地覆盖数据库的 2001-2016 年美国本土土地覆盖变化模式。ISPRS J Photogramm Remote Sens 162(二月):184-199。https://doi.org/10.1016/j.isprsjprs.2020.02.019 Huang W、Ye F、Zhang YJ、Park K、Du J、Moghimi S、Myers E、Péeri S、Calzada JR、Yu HC、Nunez K、Liu Z (2021) 飓风哈维期间加尔维斯顿湾周边极端洪灾的复合因素。海洋模型 158:101735。 https://doi.org/10.1016/j.ocemod.2020.101735 Huizinga J、de Moel H、Szewczyk W (2017) 全球洪水深度-损害函数。在:联合研究中心 (JRC)。https://doi.org/10.2760/16510 跨机构绩效评估工作组 (IPET) (2006) 新奥尔良和路易斯安那州东南部飓风防护系统绩效评估跨机构绩效评估工作组第 VIII 卷最终报告草案——工程和运营风险与可靠性分析。Jyoteeshkumar Reddy P、Sriram D、Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。 Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ(2010)国际气候管理最佳轨迹档案(IBTrACS)。Bull Am Meteor Soc 91(3):363–376。https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。 J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ (2010) 气候管理国际最佳轨迹档案 (IBTrACS)。Bull Am Meteor Soc 91(3):363–376。 https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015 年)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005 年)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ (2010) 气候管理国际最佳轨迹档案 (IBTrACS)。Bull Am Meteor Soc 91(3):363–376。 https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015 年)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005 年)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.
页1 © Philippe Devanne – Fotolia;页2 t © Jack.Q – Fotolia,b © OLIVIER MORIN/AFP/Getty Images; 5 t © Carolina K. Smith – Fotolia,c © jpmatz – Fotolia,b © PA/PA Archive/Press Association Images;页8© Gustoimages/科学图片库;页10©2010麻省理工学院。图片来源:麻省理工学院博物馆;页11 t © Daniel Vorley/LatinContent/Getty Images,b © Touten- photon – Fotolia;页14 © luiggi33 – Fotolia;页17©NASA;页18 © Richard Coombs / Alamy;页21 © 看与学/布里奇曼艺术图书馆;页22 © 2happy – Fotolia;页23 © 斯蒂芬·芬恩 – Fotolia;页25 © bytesurfer – Fotolia;页26 © 沃尔沃汽车英国有限公司;页27 © 卡斯帕·本森/fstop/Corbis;页28 © 桑德拉·保尔森/iStockphoto.com;页30 © Letizia – Foto- lia;页32 © 保罗·希斯曼 – Fotolia;页33 © 史蒂夫·曼 – Fotolia;页38 © Peter Ginter /科学派系/SuperStock;页41 © neutronman – Fotolia;页42 © Bartłomiej Szewczyk – Fotolia;页44b © 鲍勃·托马斯/盖蒂图片社;页46 © Wolf/ Corbis;页49 © MSPhotographic – Fotolia;页52 © 斯特罗姆洛山和赛丁泉天文台/科学图片库; © 特伦斯·艾默生 – Fotolia;页53 © photomic – Fotolia;页54 tl © Digital Vision/Getty Images,tr © NASA/约翰霍普金斯大学应用物理实验室/华盛顿卡内基研究所,br © NASA,bl © Digital Vision/Getty Images,b © Galaxy Picture Library / Alamy;页55 b © NASA/科学照片库;页57 © bhofack2 – 照片;页60 © ricknoll – Fotolia;页62 t © David Brewster/明尼阿波利斯星坛报/ZumaPress/Corbis;页63 t © neutron-man – Fotolia;页64 © 爱丁堡皇家天文台/AATB/科学图片库;页70©Photodisc/盖蒂图片社;页71 tl © SeanPavonePhoto – Fotolia,tr © nastazia – Fotolia,b © nikkytok – Fotolia;页72 t © photobyjimshane – Fotolia,c © st-fotograf – Fotolia,bl © ermess – Fotolia,br © Jason Yoder – Fotolia;页73 tl © Mario Beauregard – Fotolia,tr © gzmks – Fotolia,b © Aaron Kohr – Fotolia;页74 © 安迪·罗兹 – Fotolia;页76 t © Sanguis – Fotolia。 c © Reidos – Fotolia,b © ia_64 – Fotolia;页79 © Dariusz Kopestynski – Fotolia;页82 © Leslie Garland 图片库/Alamy;页85 © Calek – Fotolia;页89 l © ColdCoffee – Fotolia,r © xalanx – Fotolia;页96 © adisa – Fotolia;页100 © 2004 图像作品/TopFoto;页103 t © Jean-Loup Charmet / 科学照片图书馆,b © Peter Menzel / 科学照片图书馆;页108 l © lucielang – Fotolia,r © Bondarau – Fotolia;页113 © Photodisc/盖蒂图片社;页114 t © ikepict – Fotolia,b © Junjie – Fotolia;页118 l © Martin Dohrn / 科学照片库,r © Dale Boyer / 科学照片库;页120 © Airfotos 有限公司;页121 © montego6 – Fotolia;页122 © Freefly – Fotolia;页123 © Jinx 摄影动物/Alamy;页124 t © Sipa Press / Rex Features,c © FRANCK FIFE/AFP/Getty Images,b © Csák István – Fotolia;页126 t © Georgios Kollidas – Fotolia,b © SSPL/Getty Images;页127 © 安德鲁·巴金 – Fotolia;页129 © jcsmilly – Fotolia;页132 © Digital Vision/Photolibrary Group Ltd;页135 © Alex Salcedo – 摄影;页138 © 尼克·英格兰;页140 © Igor Kali – 摄影;页142 l © Cosmic – 摄影,r © BSIPSA / Alamy;页143 t © Dean Chalkley / PYMCA / Rex Features,b © BSIP SA / Alamy;页144 © Sch- 葡萄酒牧师 – Fotolia;页146 © Grafvision – 摄影;页147©菲利普·哈里斯;页156 © zagorskid – Photolia;页157 t © Zoe – 摄影,a © Glenn Frank/iStockphoto.com,b © Ingram Publishing Limited,c © Markus Bormann – 摄影;页158 t © heysues23 – 摄影,b © All Canada Photos / Alamy;页162 t © Neil Manuell – 摄影,b © PiLensPhoto – 摄影;页163 t © Alexander Erdbeer – 摄影,b © yevgeniy11 – 摄影;页165围攻-摄影;页168 t © Photodisc/Getty Images,b © Alex Hinds/Alamy;页171 © AVAVA – Photolia;页174 t © 图像来源 IS2 – Photolia,c © mgrushin – Photolia,b © Stefan Scheer;页176 © Lovrencg – 摄影;页179 © 罗伯特·克莱顿 / Alamy;页180 © Krsmanovic – 摄影;页181 t © Artem Merzlenko – 摄影,b © starush – 摄影;页183 © 加里——摄影;页185 © Stockbyte/Photolibrary Group Ltd;页186 © Radu Razvan – 摄影;页187 © Eric Issele – 摄影;页188 t © China Photos/Getty Images,b © Laurence Gough – 摄影;页196 © photonanny – Photolia;页197 © DigiMagic 出版/Alamy;页198 © ISO400 – 摄影;页200 en © Bluestock – Photolia,tr © Valuykin S. – Photolia,c © mini – Photolia,蓝色 © Gina Sanders – Photolia,br © Nick England;页202 © 疯狂设计 – Photolia;页205 © popov48 – 摄影;页207 t © Michael Luckett – 摄影,c © Dr Mitsuo Ohtsuki/科学照片库,b © Science Source/科学照片库;页208 t © Elizabeth Warren,b © sciencephotos / Alamy;页209 t © Fedor Bolba – Photolia,蓝色 © Goinyk Volodymyr – Photolia,bc © EpicStockMedia – Photolia,br © Olga Vasik – Photolia;页211 © Ungor – 摄影;页215©自然历史博物馆/Alamy;页218 © 呼叫 – Photolia;页229 b © Jay Pasachoff/科学派系/Corbis;页230 © Stockbyte/Getty Images;页232 © 复活节/科学图片库;页233 © sciencephotos / Alamy;页234 © Leslie Garland 图片库/Alamy;页235 l © Scott Camazine/Alamy,r © Martin Bond/Science Photo Library;页237 t © Gorchy / http://upload.wikimedia.org/wikipedia/commons/b/b4/NdFeB-Domains.jpg / http://creativecommons.org/licenses/by-sa/3.0/deed.en b © SSPL/Getty Images;页238 © 水 – Fotolia;页239 t © eyewave – 摄影,c © Reflection – 摄影,b © Andrew Lambert 摄影/科学照片库;页240© Leslie Garland 图片库/Alamy;页241 © 尼克·英格兰;页242 © Mario Beauregard – 摄影;页244 © Supertrooper – Photolia;页247 © AP/Press Association Images;页251 © Artem Merzlenko – 摄影;页254 © TebNad – Photolia;页255 © David J. Green – 技术/Alamy;页264 © 马克·克利福德/Barcroft Media/Getty Images;页265 © 埃弗里特历史收藏/Alamy;页267 © ullsteinbild / TopFoto;第 270 页 © Science Photo Library;第 272 页 © NASA / Harrison Schmitt;第 274 页 © James King-Holmes/Science Photo Library;第 275 页 © Ton Keone/Visuals Unlimited/Science Photo Library;第 276 页 t © Centre Oscar Lambret / Phanie / Rex Features,b © Martyn F. Chillmaid/Science Photo Library;第 278 页 © AP/Press Association Images;第 279 页 © Hellen Sergeyeva – Fotolia;第 280 页 © John Lund/Blend Images/Corbis;第 281 页 © The Art Archive / Alamy;第 283 页 © Tim Wright/Corbis;第286 © Stefan Kühn / http://upload.wikimedia.org/wikipedia/commons/4/4e/Nuclear_Power_Plant_Cattenom.jpg / http://creativecommons.org/licenses/by-sa/2.5/deed.en;第 288 页 © Yann / http://upload.wikimedia.org/wikipedia/commons/e/e9/Antinuclear_Walk_Geneva-Brussels_2009_Geneva.jpg / http://creativecommons.org/licenses/by-sa/2.5/deed.en
页1 © Philippe Devanne – Fotolia;页2 t © Jack.Q – Fotolia,b © OLIVIER MORIN/AFP/Getty Images; 5 t © Carolina K. Smith – Fotolia,c © jpmatz – Fotolia,b © PA/PA Archive/Press Association Images;页8© Gustoimages/科学图片库;页10©2010麻省理工学院。图片来源:麻省理工学院博物馆;页11 t © Daniel Vorley/LatinContent/Getty Images,b © Touten- photon – Fotolia;页14 © luiggi33 – Fotolia;页17©NASA;页18 © Richard Coombs / Alamy;页21 © 看与学/布里奇曼艺术图书馆;页22 © 2happy – Fotolia;页23 © 斯蒂芬·芬恩 – Fotolia;页25 © bytesurfer – Fotolia;页26 © 沃尔沃汽车英国有限公司;页27 © 卡斯帕·本森/fstop/Corbis;页28 © 桑德拉·保尔森/iStockphoto.com;页30 © Letizia – Foto- lia;页32 © 保罗·希斯曼 – Fotolia;页33 © 史蒂夫·曼 – Fotolia;页38 © Peter Ginter /科学派系/SuperStock;页41 © neutronman – Fotolia;页42 © Bartłomiej Szewczyk – Fotolia;页44b © 鲍勃·托马斯/盖蒂图片社;页46 © Wolf/ Corbis;页49 © MSPhotographic – Fotolia;页52 © 斯特罗姆洛山和赛丁泉天文台/科学图片库; © 特伦斯·艾默生 – Fotolia;页53 © photomic – Fotolia;页54 tl © Digital Vision/Getty Images,tr © NASA/约翰霍普金斯大学应用物理实验室/华盛顿卡内基研究所,br © NASA,bl © Digital Vision/Getty Images,b © Galaxy Picture Library / Alamy;页55 b © NASA/科学照片库;页57 © bhofack2 – 照片;页60 © ricknoll – Fotolia;页62 t © David Brewster/明尼阿波利斯星坛报/ZumaPress/Corbis;页63 t © neutron-man – Fotolia;页64 © 爱丁堡皇家天文台/AATB/科学图片库;页70©Photodisc/盖蒂图片社;页71 tl © SeanPavonePhoto – Fotolia,tr © nastazia – Fotolia,b © nikkytok – Fotolia;页72 t © photobyjimshane – Fotolia,c © st-fotograf – Fotolia,bl © ermess – Fotolia,br © Jason Yoder – Fotolia;页73 tl © Mario Beauregard – Fotolia,tr © gzmks – Fotolia,b © Aaron Kohr – Fotolia;页74 © 安迪·罗兹 – Fotolia;页76 t © Sanguis – Fotolia。 c © Reidos – Fotolia,b © ia_64 – Fotolia;页79 © Dariusz Kopestynski – Fotolia;页82 © Leslie Garland 图片库/Alamy;页85 © Calek – Fotolia;页89 l © ColdCoffee – Fotolia,r © xalanx – Fotolia;页96 © adisa – Fotolia;页100 © 2004 图像作品/TopFoto;页103 t © Jean-Loup Charmet / 科学照片图书馆,b © Peter Menzel / 科学照片图书馆;页108 l © lucielang – Fotolia,r © Bondarau – Fotolia;页113 © Photodisc/盖蒂图片社;页114 t © ikepict – Fotolia,b © Junjie – Fotolia;页118 l © Martin Dohrn / 科学照片库,r © Dale Boyer / 科学照片库;页120 © Airfotos 有限公司;页121 © montego6 – Fotolia;页122 © Freefly – Fotolia;页123 © Jinx 摄影动物/Alamy;页124 t © Sipa Press / Rex Features,c © FRANCK FIFE/AFP/Getty Images,b © Csák István – Fotolia;页126 t © Georgios Kollidas – Fotolia,b © SSPL/Getty Images;页127 © 安德鲁·巴金 – Fotolia;页129 © jcsmilly – Fotolia;页132 © Digital Vision/Photolibrary Group Ltd;页135 © Alex Salcedo – 摄影;页138 © 尼克·英格兰;页140 © Igor Kali – 摄影;页142 l © Cosmic – 摄影,r © BSIPSA / Alamy;页143 t © Dean Chalkley / PYMCA / Rex Features,b © BSIP SA / Alamy;页144 © Sch- 葡萄酒牧师 – Fotolia;页146 © Grafvision – 摄影;页147©菲利普·哈里斯;页156 © zagorskid – Photolia;页157 t © Zoe – 摄影,a © Glenn Frank/iStockphoto.com,b © Ingram Publishing Limited,c © Markus Bormann – 摄影;页158 t © heysues23 – 摄影,b © All Canada Photos / Alamy;页162 t © Neil Manuell – 摄影,b © PiLensPhoto – 摄影;页163 t © Alexander Erdbeer – 摄影,b © yevgeniy11 – 摄影;页165围攻-摄影;页168 t © Photodisc/Getty Images,b © Alex Hinds/Alamy;页171 © AVAVA – Photolia;页174 t © 图像来源 IS2 – Photolia,c © mgrushin – Photolia,b © Stefan Scheer;页176 © Lovrencg – 摄影;页179 © 罗伯特·克莱顿 / Alamy;页180 © Krsmanovic – 摄影;页181 t © Artem Merzlenko – 摄影,b © starush – 摄影;页183 © 加里——摄影;页185 © Stockbyte/Photolibrary Group Ltd;页186 © Radu Razvan – 摄影;页187 © Eric Issele – 摄影;页188 t © China Photos/Getty Images,b © Laurence Gough – 摄影;页196 © photonanny – Photolia;页197 © DigiMagic 出版/Alamy;页198 © ISO400 – 摄影;页200 en © Bluestock – Photolia,tr © Valuykin S. – Photolia,c © mini – Photolia,蓝色 © Gina Sanders – Photolia,br © Nick England;页202 © 疯狂设计 – Photolia;页205 © popov48 – 摄影;页207 t © Michael Luckett – 摄影,c © Dr Mitsuo Ohtsuki/科学照片库,b © Science Source/科学照片库;页208 t © Elizabeth Warren,b © sciencephotos / Alamy;页209 t © Fedor Bolba – Photolia,蓝色 © Goinyk Volodymyr – Photolia,bc © EpicStockMedia – Photolia,br © Olga Vasik – Photolia;页211 © Ungor – 摄影;页215©自然历史博物馆/Alamy;页218 © 呼叫 – Photolia;页229 b © Jay Pasachoff/科学派系/Corbis;页230 © Stockbyte/Getty Images;页232 © 复活节/科学图片库;页233 © sciencephotos / Alamy;页234 © Leslie Garland 图片库/Alamy;页235 l © Scott Camazine/Alamy,r © Martin Bond/Science Photo Library;页237 t © Gorchy / http://upload.wikimedia.org/wikipedia/commons/b/b4/NdFeB-Domains.jpg / http://creativecommons.org/licenses/by-sa/3.0/deed.en b © SSPL/Getty Images;页238 © 水 – Fotolia;页239 t © eyewave – 摄影,c © Reflection – 摄影,b © Andrew Lambert 摄影/科学照片库;页240© Leslie Garland 图片库/Alamy;页241 © 尼克·英格兰;页242 © Mario Beauregard – 摄影;页244 © Supertrooper – Photolia;页247 © AP/Press Association Images;页251 © Artem Merzlenko – 摄影;页254 © TebNad – Photolia;页255 © David J. Green – 技术/Alamy;页264 © 马克·克利福德/Barcroft Media/Getty Images;页265 © 埃弗里特历史收藏/Alamy;页267 © ullsteinbild / TopFoto;第 270 页 © Science Photo Library;第 272 页 © NASA / Harrison Schmitt;第 274 页 © James King-Holmes/Science Photo Library;第 275 页 © Ton Keone/Visuals Unlimited/Science Photo Library;第 276 页 t © Centre Oscar Lambret / Phanie / Rex Features,b © Martyn F. Chillmaid/Science Photo Library;第 278 页 © AP/Press Association Images;第 279 页 © Hellen Sergeyeva – Fotolia;第 280 页 © John Lund/Blend Images/Corbis;第 281 页 © The Art Archive / Alamy;第 283 页 © Tim Wright/Corbis;第286 © Stefan Kühn / http://upload.wikimedia.org/wikipedia/commons/4/4e/Nuclear_Power_Plant_Cattenom.jpg / http://creativecommons.org/licenses/by-sa/2.5/deed.en;第 288 页 © Yann / http://upload.wikimedia.org/wikipedia/commons/e/e9/Antinuclear_Walk_Geneva-Brussels_2009_Geneva.jpg / http://creativecommons.org/licenses/by-sa/2.5/deed.en