摘要 本文回顾并讨论了直流和交流铁路供电系统。还比较了这些系统的优缺点。此类系统的一个主要问题是,与非牵引系统相比,它们占据了电力消耗的最大份额。因此,大多数新技术都侧重于提高铁路系统的能源效率。本文讨论了降低电力牵引系统消耗的主要操作方法。这些方法包括使用可再生能源 (RER),例如太阳能光伏 (PV) 板、风力涡轮机和再生制动。此外,还介绍了最常见的储能设备,如电池、超级电容器和飞轮。本文还解释了它们用于铁路系统以储存来自 RER 的多余能量或再生制动期间的返回能量(电池、超级电容器和飞轮)。此外,还简要讨论了为特定应用选择正确的存储系统的挑战。
表 1. 有关环境和社会参数的主要国家立法 ...................................................................................................................... 21 表 2. 与许可程序相关的法律 ................................................................................................................................................ 37 表 3. 欧洲复兴开发银行的项目影响报告书 ............................................................................................................................................. 41 表 4. 环境和社会影响评估与塞尔维亚环境影响评估流程之间的异同 ............................................................................................. 43 表 5. 贝尔格莱德 - 尼什铁路线的拟议分段 ............................................................................................................. 49 表 6. 桥梁和桥梁结构 ................................................................................................................................................ 53 表 7. 车站数量和位置 ................................................................................................................................................ 53 表 8. 相关设施信息 ................................................................................................................................................ 59 表 9. 主要标准及加权系数 ............................................................................................................................................. 63 表 10. 各方案对人口的社会影响 ................................................................................................................................ 64 表 11. 各方案的平均噪音影响,考虑了较大的定居点................................................................................................................................ 65 表 12. 三种方案影响概览................................................................................................................................... 66 表 13. 平均二氧化碳排放量,以每客公里和每吨公里计算......................................................................................................................... 68 表 14. 最终选定的标准集......................................................................................................................................................... 68 表 15. 所有替代方案按每个子标准给出的数值.................................................................................................................... 69 表 16. 替代方案比较......................................................................................................................................................... 71 表 17. 替代方案比较......................................................................................................................................................... 73 表 18. 替代方案比较............................................................................................................................................................................. 74 表 19. 替代方案比较 ................................................................................................................................................ 76 表 20. 剖面 Obrež-Ratare, PD 182 的地下水位 ...................................................................................................... 107 表 21. 剖面 Varvarin-Ćićevac, PL-191 的地下水位 ............................................................................................. 107 表 22. 剖面 Striža-new, 951А 的地下水位 ............................................................................................................. 107 表 23. 剖面 Žitkovac-RO Moravica, 505 的地下水位 ............................................................................................. 108 表 24. 剖面 Bobovište, 500 的地下水位 ............................................................................................................. 108 表 25. 剖面 mramor 的地下水位 ............................................................................................................................. 108 表 26. 保护区 - 地下水卫生保护区概览来源...................................................................................................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量(Qavg)值概览 ...................................................................................................................................................................................... 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位(havg)值概览 ............................................................................................................................................................................. 120 表 29. 水分类 ...................................................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121
摘要:针对电气化铁路负序治理及再生制动能量利用问题,提出了一种基于铁路功率调节器的考虑储能系统潮流的分层补偿优化策略。介绍了储能式铁路功率调节器的拓扑结构,分析了其负序补偿及再生制动能量利用机理。考虑储能系统设备容量和潮流对铁路功率调节器补偿效果的影响,构建了储能式铁路功率调节器分层补偿优化的目标函数和约束条件,并采用序列二次规划法进行求解。通过多条件仿真试验验证了所提策略的可行性。结果表明,所提出的优化补偿策略在系统设备容量受限的情况下,能够实现负序补偿和再生制动能量利用,提高牵引变电站的功率因数,且具有良好的实时性。
摘要 - 与传统的基于变压器的电台相比,完全可控制的基于电子设备的铁路馈线提供了更好的电源质量和更灵活的配置。本文研究了具有可再生能源访问的基于模块化的多级转换器(MMC)的静态转换器站。通过背部转换器的直流链路将风力发电耦合到车站。动态的单相牵引负载和间歇性可再生生成为DC链路电压带来了双重频率振荡和大偏差问题。提出了特殊的设计注意事项和控制方案,以通过控制插入的总模块的总数来稳定DC链路电压。所提出的控制方案解决了由单相负载引起的电压振荡问题,并在10 MW步骤变化下降低了直流链路电压偏差。一系列基于设备的模拟验证了控制方案,该方案实现了可靠的耦合接口,以将可再生生成连接到直流总线。
建造和维修局局长、海军少将 Hlchborn 报告了建造情况。本报告中最有趣的部分与我们最近的战争经验的宝贵成果有关,这些经验影响了军舰的设计和装备。有护套的船只已经证明了它们比无护套的船只具有战略和战术优势;船上的可燃材料必须限制在最低限度,灭火设备必须是最佳类型。暴露在热 '■ II 大副下的船上的一般卫生条件非常令人满意,但也发现了一些缺陷,特别是在一些早期船只的通风方面。生活区中蒸汽管道的存在受到谴责,趋势是用电力取代蒸汽来为各种辅助设备供电;该局已在 36 艘船只上安装了 320 个
铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
摘要。铁路轴是火车车轮及其车身之间的重要连接。但是,循环载荷和高速可以引起铁路轴的疲劳,这可能导致损害人体安全。因此,重要的是要找到具有最低重量和成本的良好机械性能的材料。在本文中,已经执行了一种使用Ashby图表的综合方法,以选择铁路轴的候选材料。这些方法从确定问题,目标函数和约束来开始分析功能开始。之后,使用PAHL和Beitz定量加权方法对所获得的结果进行排名。结果表明,铁路轴的最佳五个候选材料分别是TI-6AL-4V,AISI 4130,EA16碳钢,Bismaleimide Matrix CFRP和7000 AL。
The methodology examines socio-economic trends, political landscapes, existing service conditions, provides a baseline for the project alignment with territorial and technical environments, establishes objectives related to improved travel conditions, environmental quality, population well-being, quantifies objectives, including congestion reduction, enhanced network capacity, safety improvements and compliance with standards, identifies case studies based on coherent functions aligned with investment objectives, distinguishes project类型和列出物理实现以进行全面分析。它为寻求将岩浆衍生技术集成到铁路系统的利益相关者提供了系统的方法。通过遵循欧盟委员会的指南,该方法可确保对福利进行彻底评估,包括改善旅行条件,降低环境影响,增强安全性。该框架为决策者提供了对战略和知情运输基础设施投资的宝贵见解。
• 转化器干燥废物并驱除挥发物 • 当废物沿着炉排向下移动时,热气体注入其中 • 固体被气化并从上方排出 • 剩余的炭落到第二阶段 • 移动炉排在焚烧炉中很常见,具有经过验证的强大性能
委员会的结论是,需要改进信号和交通管理技术,才能在英国打造世界一流的铁路网络。委员会支持加快开发欧洲列车控制系统 (ETCS)、交通管理软件和驾驶员咨询系统的想法,但这应取决于对数字铁路业务案例的仔细考虑、资金的明确性以及对该计划将如何影响现有的改进和更新工作计划的清晰理解。