肝细胞癌(HCC)是全球与癌症相关死亡的第三大主要原因,到2040年,全球死亡人数和诊断的数量预计将增加55%以上(Marrero等人,2018年; Rumgay等人,2022年)。目前,主要治疗方法是肝切除和肝移植。然而,治疗后复发率保持较高,肝切除和肝移植后5年复发率分别为70%和35%(Xu等,2019)。近年来,对微血管侵袭(MVI)在HCC中的作用引起了显着关注。MVI定义为侵袭肿瘤细胞进入血管内皮细胞之间的空间,包括门静脉,肝动脉和淋巴管,是术后复发和HCC患者预后不良的独立危险因素(Gouw等人,2011年)。值得注意的是,对于直径小于5 cm的孤立小型HCC病变的患者,MVI的存在显着降低了无复发的生存率(RFS)和整体存活率(OS)(Sheng等,2020; Hong et al。,2021; Xiong et al。因此,迫切需要具有预后和治疗意义的更多特异性分子生物标志物。近年来单细胞RNA测序(SCRNA-SEQ)技术的快速发展彻底改变了对各种病理组织中细胞异质性的理解(Ramachandran等,2019; Kuppe等,2021)。SCRNA-SEQ导致肝癌研究中的显着发现。每个亚群在肝癌微环境中起着独特的作用。研究表明,肝癌中与肿瘤相关的巨噬细胞(TAM)与患者的预后差密切相关,并且它们在TAM的炎症反应中鉴定了关键基因,例如SLC40A1和GPNMB(Ma等,2019; Zhang等,2019)。此外,SCRNA-SEQ已用于绘制包括T细胞和树突状细胞在内的肝癌组织中的各种免疫细胞亚群。例如,LAMP3阳性树突状细胞介导免疫抑制,而TREM2-阳性TAM抑制了CD8 + T细胞的内化为肿瘤组织(Zhang等,2019; Zheng等,2017; Tan等,2023)。尽管发现了这些发现,但缺乏对肝细胞癌中恶性细胞的表达情况的全面理解,尤其是在MVI的进展过程中,缺乏,并且它们在肿瘤中的特定作用尚不清楚。本研究研究了肝细胞癌中恶性细胞的表达纤维,系统地分类了这些细胞,并详细介绍了与MVI相关的细胞异质性以及特异性恶性亚群的分子生物学特征。一种机器学习方法用于基于恶性细胞的签名基因构建预后模型,该模型不仅增强了签名基因的预后效用,而且还鉴定了先前未报告的分子,即Marcksl1。进一步的研究表明,MARCKSL1可以通过与PTN信号网络的相互作用来促进MVI的发展。目前的发现表明,Marcksl1是肝细胞癌和MVI进展的潜在治疗靶标,对于改善治疗策略和临床结果至关重要,尤其是对于MVI患者。
感知是在大脑中形成图形-地面分割和以物体为中心的表征之后产生的。研究表明,注意力在忽视中起着关键作用,研究表明颞顶交界处受损的患者无法将注意力从同侧空间转移到对侧空间(Friedrich、Egly、Rafal & Beck,1998;Posner、Walker、Friedrich & Rafal,1984),即使对于出现在同侧半视野内的目标也是如此(Ladavas,1990;Ladavas、Del Pesce & Provinciali,1989)。与对侧注意力受损相比,对同侧空间的注意力实际上可能会增强(D'Erme、Robertson、Bartolomeo、Daniele & Gainotti,1992;Ladavas,1990;Ladavas、Petronio & Umilta,1990)。这可能是由于右半球受损后优势左半球的抑制作用减弱所致(Cohen、Romero、Servan-Schreiber & Farah,1994;Kinsbourne,1977、1993)。使用经颅磁刺激 (TMS) 暂时扰乱右顶叶皮质处理的研究也为这种半球竞争解释忽视提供了证据(Blankenburg et al.,2008;Seyal、Ro & Rafal,1995;Szczepanski & Kastner,2013)。或者,如果右半球负责注意空间的两个半部,而左半球只负责注意空间的右侧,那么右半球损伤更有可能导致忽视(Heilman & Valenstein,1979;Heilman & Van Den Abell,1979,1980)。此外,右半球损伤后,同侧半球也可能出现注意力缺陷(Vuilleumier & Rafal,2000),忽视还可能出现时间注意力缺陷(Husain、Shapiro、Martin & Kennard,1997)。这些关于忽视的半球不对称解释表明,感知处理可能在大脑损伤同一侧(同侧)的视觉空间中受到影响,这与该领域的普遍观点(同侧空间不受影响)相反。为了验证这一想法,在本研究中,我们使用元对比掩蔽范式评估了忽视患者对侧和同侧空间的空间和时间处理差异,其中短暂呈现的目标刺激在元对比掩蔽之前以不同的延迟呈现。在神经健康的受试者中,当目标刺激在周围元对比掩蔽之前约 30 毫秒的相同位置呈现时,目标刺激经常被错过,并且只感知到元对比掩蔽(Breitmeyer,1984;Breitmeyer & Ogmen,2000;Ogmen,Breitmeyer,& Melvin,2003)。有人假设这种掩蔽是由于视觉皮层中掩蔽的反馈处理中断了目标刺激的前馈处理(Enns,2004;Ro,Breitmeyer,Burton,Singhal,& Lane,2003)。重要的是,研究之前已经表明,正常受试者的元对比掩蔽的幅度和持续时间受到内源性注意力的影响(Boyer & Ro,2007;Ramachandran & Cobb,1995)。通过操纵这些目标和掩蔽刺激在空间中的位置和时间中呈现,我们评估了忽视如何影响两名忽视患者对侧和同侧半场的元对比掩蔽。为了进行比较,我们还在一组神经健康、年龄匹配的受试者中使用相同的范例测量了元对比掩蔽的空间和时间范围
不受位置变化的影响。生物控制论,36(4),193-202。 https://doi.org/10.1007/BF 00344251 Goodfellow, I.、Bengio, Y. 和 Courville, A. (2016)。深度学习。麻省理工学院出版社。 (Schmidt、I. Schiffman、Y. Schaefer、A. 化学工程师和仪器仪表(2018)Graves、A.、Wayne、G. 和 Danihelka、I.(2014)。神经图灵机。 arXiv。 Ha, D. 和 Schmidhuber, J. (2018)。世界模特。 arXiv。 https://arxiv.org/abs/1803.10122 Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y., & Tao, D. (2020 年)。关于视觉变压器的调查。 arXiv。 https://arxiv.org/abs/2012.12556 Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., 和 Lerchner, A. (2018)。迈向解开表征的定义。 arXiv。 https://archiv. org/abs/1812.02230 美国国立卫生研究院(AI)(2020 年)。 2020 年人工智能市场:5 年历史的人工智能创新和 5 年历史的临床试验 LeCun, Y., Bengio, Y., & Hinton, G. (2015 年)。深度学习。自然,521,436-444。 http://dx.doi.org/10.1038/nature 14539 Mansimov, E., Parisotto, E., Ba, JL 和 Salakhutdinov, R. (2015)。利用注意力机制根据标题生成图像。 arXiv。 https://archiv.org/abs/1511.02793 纽约(2015 年)。 我的一位朋友是角川家族的成员(2016年)(2016年)。 http://dx.doi.org/10.1037/0033-295X.101.1.13 McCulloch, WS 和 Pitts, W. (1943)。神经活动中蕴含的观念的逻辑演算。数学生物物理公报,5(4),115-133。 https://doi.org/10.1007/BF02478259 Nakkiran, P.、Kaplun, G.、Bansal, Y.、Yang, T.、Barak, B. 和 Sutskever, I. (2019)。深度双重下降:更大的模型和更多的数据会带来危害。 arXiv。 https://arxiv.org/abs/ 1912.02292 Perez, J.、Marinkovic, J. 和 Barcelo, P.(2019 年 5 月 6-9 日)。论现代神经网络架构的图灵完备性。 ICLR 2019:第七届学习表征国际会议。路易斯安那州新奥尔良。美国。 Radford , A.、Kim , JW、Hallacy , C.、Ramesh , A.、Goh , G.、Agarwal , S.、Sastry , G.、Askell , A.、Mishkin , P.、Clark , J.、Krueger , G. 和 Sutskever , I. (2021)。从自然语言监督中学习可转移的视觉模型。 arXiv。 https://arxiv.org/abs/2103.00020 Ramachandran, P., Zoph, B., 和 Le, QV (2017)。寻找激活函数。 arXiv。 https://arxiv.org/abs/ 1710.05941 Razavi, A., van the Word, A. 和 Vinyals, O. (2019)。使用 VQ-VAE-2 生成各种高保真图像arXiv。 https://arxiv.org/abs/1906.00446 Reed, S.、Akata, Z.、Yan, X.、Logeswaran, L.、Schiele, B. 和。
*nurazree642@uitm.edu.my通讯作者:Nurazree Mahmud博士摘要:总质量管理(TQM)是本研究中可能的解决方案。研究了四个主要原则:以领导力为导向,人参与,过程方法和互惠互利的供应商关系。研究人员使用一种定量方法来与问卷进行调查,该问卷研究了影响运营效率的四个不同因素:以领导力为导向的人,人参与,过程方法和供应商的关系。本研究采用了一种概率抽样方法,即简单的随机抽样,以针对位于马来西亚南部地区的一家酒店公司的几位主管和经理。该试验研究的样本量由36位受访者组成。通过SPSS检查了数据,突出了独立变量和因变量的可靠性。该研究采用了分析方法,包括描述性分析,可靠性分析和多元回归分析。该研究的发现表明,“以领导力为驱动”和“互利供应商的关系”并没有影响运营的有效运营程度。但是,运营效率与“人的参与”和“过程方法”之间出现了显着的积极关系。这些发现表明,在酒店业中取得了一些持续的成功的明确战略:通过积极参与并通过实施TQM原则来促进员工赋权。TQM是一种众所周知的质量方法。to这项研究为解决当前的运营挑战并定位酒店以提高绩效,提供了宝贵的见解。关键字:全面质量管理,运营效率,领导力驱动,人参与,过程方法,供应商关系1。引言微型,中小型企业或MSMES对于一个国家的经济增长至关重要(MD Husin&Haron,2020年)。通过提供无数的商品和服务,区域市场和社会的扩张,创造就业机会,鼓励创新以及促进市场竞争,MSMES对国民经济做出了重大贡献(MD Husin&Haron 2020)。根据Loo,Ramachandran和Raja Yusof(2023),马来西亚MSMES在2021年对该国做出了重大的经济贡献,占GDP的37.4%,并产生了5181亿令吉的增值令(2023年)。根据MD Husin&Haron(2020)的说法,一家微型企业雇用了不到五人,或者销售营业额不超过300,000令吉。另一方面,一家小型企业的销售额在30万令吉至30万令吉,雇用了5至30人。相比之下,服务和其他部门的中型业务雇用了30至75人,并在收入中产生了30万令吉至2000万令吉。根据酒店业的过去趋势,尤其是在MSMES中,由于人力资本能力,服务质量要求和资源限制等多个要素,因此在达到运营效率方面存在几个问题和主要障碍。这与酒店运营中总质量管理(TQM)概念和程序的应用有关,以查明影响运营有效性的机遇和障碍。(2020),改善组织绩效并产生高质量的服务和商品。保持重点并实施组织改进流程,需要使用系统的工具和技术来管理组织流程,并不断提高质量和客户满意度。此外,必须建立诸如质量改进团队之类的结构(Boikanyo等,2019)。
[1] Jimmy Lei BA,Jamie Ryan Kiros和Geoffrey E. Hinton。层归一化。2016。Arxiv:1607.06450 [Stat.ml]。[2] Nanxin Chen等。Wavegrad:估计波形产生的梯度。2020。Arxiv:2009.00713 [Eess.as]。[3]凯瑟琳·克罗森(Katherine Crowson)。在CIFAR-10上训练扩散模型。在线。2024。URL:https://colab.research.google.com/drive/1ijkrrv-d7bosclvkhi7t5docryqortm3。[4]凯瑟琳·克罗森(Katherine Crowson)。v-diffusion。在线。2024。URL:https: / / github。com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py。[5] Ekin D. Cubuk等。randaugment:实用的自动化数据增强,并减少了搜索空间。2019。Arxiv:1909.13719 [CS.CV]。 [6] Yann N. Dauphin等。 通过封闭式卷积网络进行语言建模。 2017。Arxiv:1612.08083 [CS.CL]。 [7] Mostafa Dehghani等。 通用变压器。 2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1909.13719 [CS.CV]。[6] Yann N. Dauphin等。通过封闭式卷积网络进行语言建模。2017。Arxiv:1612.08083 [CS.CL]。[7] Mostafa Dehghani等。通用变压器。2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1807.03819 [CS.CL]。[8] Yilun Du和Igor Mordatch。基于能量的模型中的隐性产生和概括。2020。Arxiv:1903.08689 [CS.LG]。[9] Ian J. Goodfellow等。生成对抗网络。2014。Arxiv:1406.2661 [Stat.ml]。[10] Dan Hendrycks和Kevin Gimpel。高斯错误线性单元(Gelus)。2023。Arxiv:1606.08415 [CS.LG]。[11] Jonathan Ho,Ajay Jain和Pieter Abbeel。剥离扩散概率模型。2020。Arxiv:2006.11239 [CS.LG]。[12] Jonathan Ho和Tim Salimans。无分类器扩散指南。2022。ARXIV:2207.12598 [CS.LG]。[13]安德鲁·霍华德(Andrew Howard)等人。搜索MobilenetV3。2019。Arxiv:1905.02244 [CS.CV]。[14] Andrew G. Howard等。 Mobilenets:用于移动视觉应用的有效卷积神经网络。 2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。[14] Andrew G. Howard等。Mobilenets:用于移动视觉应用的有效卷积神经网络。2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。2017。Arxiv:1704.04861 [CS.CV]。[15] Forrest N. Iandola等。squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。2016。Arxiv:1602.07360 [CS.CV]。[16] Imagenet 64x64基准(图像生成)。用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。[17] Sergey Ioffe和Christian Szegedy。批次归一化:通过减少内部协变性转移来加速深层网络训练。2015。Arxiv:1502.03167 [CS.LG]。[18] Diederik P. Kingma和Jimmy Ba。亚当:一种随机优化的方法。2017。Arxiv:1412.6980 [CS.LG]。[19] Diederik P. Kingma和Ruiqi Gao。将扩散目标理解为具有简单数据增强的ELBO。2023。Arxiv:2303.00848 [CS.LG]。[20] Diederik P. Kingma等。变化扩散模型。2023。Arxiv:2107.00630 [CS.LG]。[21] Zhenzhong Lan等。albert:一个精简版的语言表示学习。2020。Arxiv:1909.11942 [CS.CL]。[22] Ilya Loshchilov和Frank Hutter。重量衰减正则化。2019。Arxiv:1711.05101 [CS.LG]。[23] Preetum Nakkiran等。深度下降:更大的模型和更多数据损害。2019。Arxiv:1912.02292 [CS.LG]。[24] Alex Nichol和Prafulla Dhariwal。改进了扩散概率模型。2021。Arxiv:2102.09672 [CS.LG]。[25] Aaron van den Oord,Nal Kalchbrenner和Koray Kavukcuoglu。像素复发性神经网络。2016。Arxiv:1601.06759 [CS.CV]。[26] Prajit Ramachandran,Barret Zoph和Quoc V. Le。搜索激活功能。2017。Arxiv:1710.05941 [CS.NE]。 [27] Danilo Jimenez Rezende和Shakir Mohamed。 差异推断与归一化流量。 2016。Arxiv:1505.05770 [Stat.ml]。2017。Arxiv:1710.05941 [CS.NE]。[27] Danilo Jimenez Rezende和Shakir Mohamed。差异推断与归一化流量。2016。Arxiv:1505.05770 [Stat.ml]。
1 Ritchie H、Esteban Ortiz-Ospina、Diana Beltekian 等人。冠状病毒大流行 (COVID-19)。我们的世界数据 2020。2 Ye Y、Zhang Q、Wei X 等人。公平获得 COVID-19 疫苗对所有国家来说都具有拯救生命的作用。自然人类行为 2022;6:207–16。doi:10.1038/s41562-022-01289-8 3 Ramachandran R、Ross JS、Miller JE。在开展临床试验的高收入、中等收入和低收入国家获得 COVID-19 疫苗。JAMA Netw Open 2021;4:e2134233。doi:10.1001/jamanetworkopen.2021.34233 4 IFPMA。全球生物制药公司首席执行官/高管 COVID-19 媒体简报——2021 年 9 月 7 日。2021 年。https://www.youtube.com/watch?v=qA7oos7sU8Y (2022 年 3 月 31 日访问)。5 Feinmann J. Covid-19:全球疫苗生产一片混乱,短缺不仅仅是因为囤积。BMJ 2021;375:n2375。doi:10.1136/bmj.n2375 6 发展中国家的冠状病毒 (COVID-19) 疫苗:平等的康复机会。经合组织。https://www.oecd.org/coronavirus/policy-responses/coronavirus-covid-19-vaccines-for-devel oping-countries-an-equal-shot-at-recovery-6b0771e6/ (2022 年 3 月 19 日访问)。 7 Lee ST. 疫苗外交:国家品牌推广和中国在新冠疫情中的软实力。Place Brand Public Dipl 2021;:1–15。doi:10.1057/s41254-021-00224-4 8 Prabhala A, Menghaney L. 世界上最贫穷的国家在疫苗方面任由印度摆布。这是不可持续的。卫报。2021 年。https://www.theguardian.com/commentisfree/2021/apr/02/india-in-charge-of-developin g-world-covid-vaccine-supply-unsustainable (2022 年 3 月 31 日访问)。9 印度削减疫苗出口,因感染激增 - 纽约时报。 https://www.nytimes.com/2021/03/25/world/asia/india-covid-vaccine-astrazeneca.html (2022 年 3 月 31 日访问)。10 路透社。印度疫苗巨头 SII 警告美国原材料出口禁令将对供应造成冲击。路透社。2021 年。https://www.reuters.com/world/india/indian-vaccine-giant-sii-warns-supply-hit-us-raw-m aterials-export-ban-2021-03-05/ (2022 年 3 月 31 日访问)。11 孟加拉国开始接种辉瑞疫苗。https://www.aa.com.tr/en/asia-pacific/bangladesh-starts-administering-pfizer-jabs/2290815 (2022 年 3 月 31 日访问)。12 Express TF。疫苗联合生产。金融快报。https://thefinancialexpress.com.bd/editorial/co-production-of-vaccines-1629302234(2022 年 3 月 31 日访问)。13 Rotshild V、Hirsh-Raccah B、Miskin I 等人。比较 COVID-19 疫苗的临床效果:系统评价和网络荟萃分析。Sci Rep 2021;11:22777。doi:10.1038/s41598-021-02321-z 14 通讯员 S. Govt 与 Sinopharm、Incepta 签署协议。Dly. Star。 2021.https://www.thedailystar.net/health/disease/coronavirus/fallouts-fightback/vaccine/new s/govt-signs-deal-sinopharm-incepta-2153776 (2022 年 3 月 31 日访问)。15 Ritchie H、Mathieu E、Rodés-Guirao L 等人。冠状病毒大流行 (COVID-19)。我们的世界数据首次在线发布:2020 年 3 月 5 日。https://ourworldindata.org/covid-vaccinations (2022 年 3 月 31 日访问)。16 COVAX 向 105 个国家运送了 5 亿剂捐赠疫苗,突破里程碑。https://www.gavi.org/news/media-room/covax-crosses-milestone-500-million-donated-doses -shipped-105-countries (2022 年 3 月 18 日访问)。17 Byron RK, Habib WB。疫苗免费,人人享有。Dly. Star. 2020。https://www.thedailystar.net/frontpage/news/vaccine-all-free-cost-1984693 (2022 年 3 月 31 日访问)。18 孟加拉国:世卫组织冠状病毒病 (COVID-19) 仪表板,其中包含疫苗接种数据。
122。deepak s gavali,ranjit thaapa,局部和离域π电子对Si/c Haterostructs LI储存特性的协同作用,碳,2020年。https://do.org/10.10.1016/j.carbon.2020.08.076 121。Sabathainam Shammugam,Anjana Hari,Deepak Kumar,Karthik Rajendran,Tangavel Mathimani,A.E。Atabani,Kathirvel Brindhadevi,Arivalagan Pugazhendhi。基因组工程和综合效应方法的最新发展和策略,用于从2020年的微藻生产,燃料,燃料,刚被接受。120。Geetanjali Yadav,Sabarathinam Shanmugam,Ramachandran Sivaramakrishnan,Deepak Kumar,Kathihimani,Kathihvel Brindhadevi,Arivalagan Pugazhendi,Karthik Rajendran。藻类背后的机制和挑战是生物能源生产及其他地区的废水处理选择,燃料,2020年,刚刚接受。119。Nasrallah Iyad,Mahesh Kumar Ravva,Katharina Broch,John Novak,John Armitage,Guilume Schweer,Adanya Sadhanala,John E. Anthony,Jean -Luc Bredas和Henning Sirringhaus。“一种11月的缓解机制,用于使用添加剂捕获芳族噻吩衍生物中的捕获。”高级电子材料,2020年。https://doo.org/10.1002/aelm.202000250。118。Chokshi,Kummeel,Imran Pancha,Khanjan Trivedi,Rahulkumar Maurya,Aru Ghosh和Sandhya Mishra。“绿色Microalga acutodesmus dimorphus对温度敏感性氧化应激条件的生理反应。” Phartiologia Plantarum,2020年。https://doo.org/10.1111/ppl.13193。 117。 116。 115。 112。https://doo.org/10.1111/ppl.13193。117。116。115。112。V. M. Manikandan和Masilamani Vedhanayagam。“用于安全医疗图像传输的新型基于图像缩放的可逆水印方案。” ISA交易,2020年,S0019057820303426。https://doi.org/10.1016/j.isatra.2020.08.019。 Sankar,Velayudham,Murugavel Kathiresan,Bitragunta Sivakumar和Subramaniyan Mannathan。 “芳香胺的锌催化N-烷基化:一种无配体方法。”高级合成与催化,2020年。 https://doi.org/10.1002/adsc.202000499。 k Hemant Kumar Reddy,Ashish K Luhach,Buddhadeb Pradhan,Jatindra Kumar Dash,Diptendu Sinha Roy,一种用于上下文感知的智能城市,可持续性城市和社会的遗传算法,用于节能雾气层资源,2020年。 https://doi.org/10.1016/j.scs.2020.102428 114。 Nilanjon Naskar, Martin F. Schneidereit, Florian Huber, Sabyasachi Chakrabortty , Lothar Veith, Markus Mezger, Lutz Kirste, Theo Fuchs, Thomas Diemant, Tanja Weil, R. Jürgen Behm, Klaus Thonke and Ferdinand Scholz, Impact of Surface Chemistry and Doping Concentrations on gan/ga = n量子井的生物功能化,传感器,2020。 https://doi.org/10.3390/s20154179 113。 Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。 Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。 “对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。 https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.1016/j.isatra.2020.08.019。Sankar,Velayudham,Murugavel Kathiresan,Bitragunta Sivakumar和Subramaniyan Mannathan。“芳香胺的锌催化N-烷基化:一种无配体方法。”高级合成与催化,2020年。https://doi.org/10.1002/adsc.202000499。 k Hemant Kumar Reddy,Ashish K Luhach,Buddhadeb Pradhan,Jatindra Kumar Dash,Diptendu Sinha Roy,一种用于上下文感知的智能城市,可持续性城市和社会的遗传算法,用于节能雾气层资源,2020年。 https://doi.org/10.1016/j.scs.2020.102428 114。 Nilanjon Naskar, Martin F. Schneidereit, Florian Huber, Sabyasachi Chakrabortty , Lothar Veith, Markus Mezger, Lutz Kirste, Theo Fuchs, Thomas Diemant, Tanja Weil, R. Jürgen Behm, Klaus Thonke and Ferdinand Scholz, Impact of Surface Chemistry and Doping Concentrations on gan/ga = n量子井的生物功能化,传感器,2020。 https://doi.org/10.3390/s20154179 113。 Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。 Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。 “对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。 https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.1002/adsc.202000499。k Hemant Kumar Reddy,Ashish K Luhach,Buddhadeb Pradhan,Jatindra Kumar Dash,Diptendu Sinha Roy,一种用于上下文感知的智能城市,可持续性城市和社会的遗传算法,用于节能雾气层资源,2020年。https://doi.org/10.1016/j.scs.2020.102428 114。Nilanjon Naskar, Martin F. Schneidereit, Florian Huber, Sabyasachi Chakrabortty , Lothar Veith, Markus Mezger, Lutz Kirste, Theo Fuchs, Thomas Diemant, Tanja Weil, R. Jürgen Behm, Klaus Thonke and Ferdinand Scholz, Impact of Surface Chemistry and Doping Concentrations on gan/ga = n量子井的生物功能化,传感器,2020。https://doi.org/10.3390/s20154179 113。 Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。 Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。 “对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。 https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.3390/s20154179 113。Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。“对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.1016/j.orgel.2020.105895。111。Siarhei Zhuk,Terence Kin Shun Wong,MilošPetrović,Emmanuel Kymakis,Shreyash Sudhakar Hadke,Stener Lie,Lydia Helena Wong,Prashant Sonar,Sathek Dey,Sathek Dey,Sathek Krishnamurty,Goutam Kumar。 Dalapati,溶液使用超薄CUO中间层处理纯硫化物CZCTS太阳能电池,效率为10.8%,太阳RRL,2020。https://doi.org/10.1002/solr.1229333
David E. Gordon 1,2,3,4,35 , Gwendolyn M. Jang 1,2,3,4,35 , Mehdi Bouhaddou 1,2,3,4,35 , Jiewei Xu 1,2,3,4,35 , Kirsten Obernier 1,2,3,4,3 , M. White , Matthew J. , 575 35 , Veronica V. Rezelj 8,35 , Jeffrey Z. Guo 1,2,3,4 , Danielle L. Swaney 1,2,3,4 , Tia A. Tummino 1,2,9 , Ruth Huettenhain 1,2,3,4 , Robyn M. Kaake 1,2, 4 , Alice , Berils , 12 , L. 1,2,3,4 , Helene Foussard 1,2,3,4 , Jyoti Batra 1,2,3,4 , Kelsey Haas 1,2,3,4 , Maya Modak 1,2,3,4 , Minkyu Kim 1,2,3,4 , Paige Haas 1,2,3,4 , Benjamin , 21 , 21 , 24 , Pollaccoberg . ,3,4 , Jacqueline M. Fabius 1,2,3,4 , Manon Eckhardt 1,2,3,4 , Margaret Soucheray 1,2,3,4 , Melanie J. Bennett 1,2,3,4 , Merve Cakir 1,2,3,4 , Michael J. McGregyu , 1,23, 4 , Lijo , Lijo n Meyer 8 , Ferdinand Roesch 8 , Thomas Vallet 8 , Alice Mac Kain 8 , Lisa Miorin 5,6 , Elena Moreno 5,6 , Zun Zar Chi Naing 1,2,3,4 , Yuan Zhou 1,2,3,4 , Shiming Peng 1,2,9 , Ying , 2 , 14 , 14 , Shihang , Zhang , Wenqi Shen 1,2,4,11 , Ilsa T. Kirby 1,2,4,11 , James E. Melnyk 1,2,4,11 , John S. Chorba 1,2,4,11 , Kevin Lou 1,2,4,11 , Shizhong A. Dai 1,2,4 , Danish Herbert 11 , 22 , Claudia Hernandez-Armenta 12 , Jiankun Lyu 1,2,9 , Christopher JP Mathy 1,2,13,14 , Tina Perica 1,2,13 , Kala B. Pilla 1,2,13 , Sai J. Ganesan 1,2,13 , Daniel J. Saltzberg 12 , 12 , 13 , Rakeshrand , 13 . Xi Liu 1,2,9 , Sara B. Rosenthal 15 , Lorenzo Calviello 1,16 , Srivats Venkataramanan 1,16 , Jose Liboy-Lugo 1,16 , Yizhu Lin 1,16 , Xi-Ping Huang 17 , YongFeng Liu 17 , Stephanie Mark 1 , 18 , Wan Boko 18 . hn 1,2,9 , Maliheh Safari 1,2,19 , Fatima S. Ugur 1,2,4,9 , Cassandra Koh 8 , Nastaran Sadat Savar 8 , Quang Dinh Tran 8 , Djoshkun Shengjuler 8 , Sabrina J Fletcher 8 , Michael C . 0 , David J. Broadhurst 20 , Saker Klippsten 20 , Phillip P. Sharp 4 , Nicole A. Wenzell 1,2,4 , Duygu Kuzuoglu 1,2,4,21,22 , Hao-Yuan Wang 1,2,4 , Raphael Trenker , 12 , Jan A. Caver , 24 3,26 , Joseph Hiatt 3,25,26 , Theodore L. Roth 3,25,26 , Ujjwal Rathore 3,26 , Advait Subramanian 1,2,26 , Julia Noack 1,2,26 , Mathieu Hubert 10 , Robert M. Stroud , Alan Oel , 19 , 19 , 19 . by S. Rosenberg 1,2,19,27 , Kliment A Verba 1,2,9 , David A. Agard 1,2,3,19 , Melanie Ott 1,2,3,27 , Michael Emerman 28 , Natalia Jura 1,2,4,23 , Mark von Zastrow 1,2,4, 29 , Alan Verba , 13 , 13 ,21 , Olivier Schwartz 10 , Christophe d'Enfert 31 , Shaeri Mukherjee 1,2,26 , Matt Jacobson 1,2,9 , Harmit S. Malik 24 , Danica G. Fujimori 1,2,4,9 , Trey Ideker 1,32 , Charles N. 12 , 12 , F. 6,21 , James S. Fraser 1,2,13 , John D. Gross 1,2,9 , Andrej Sali 1,2,9,13 , Bryan L. Roth 17 , Davide Ruggero 1,2,4,21,22 , Jack Taunton 1,2,4 , Tanja , 12 , 12 , Bel , Bel , Marco , 13 gnuzzi 8 ✉ , Adolfo García-Sastre 5,6,33,34 ✉ , Kevan M. Shokat 1,2,4,11 ✉ , Brian K.Shoichet 1,2,9 ✉ & Nevan J. Krogan 1,2,3,4,5 ✉
1。TabákAG,Herder C,Rathmann W,Brunner EJ,KivimäkiM。糖尿病前:糖尿病发育的高风险状态。 Lancet Lond Engl。 2012; 379(9833):2279-2290。 https://doi.org/10.1016/s0140-6736(12)60283-9 2。 家庭,资源,糖尿病L等。 IDF糖尿病图集。 (第10版)。 2023年10月3日访问。https://diabetesatlas.org/ 3。 Schlesinger S,Neuenschwander M,Barbaresko J等。 糖尿病前期和糖尿病相关并发症和合并症的风险:前瞻性研究的荟萃分析的雨伞综述。 糖尿病学。 2022; 65(2):275-285。 https://doi.org/10.1007/s00125-021-05592-3 4。 Huang Y,Cai X,Mai W,Li M,Hu Y. 糖尿病前与心血管疾病风险之间的关联与所有导致死亡率:系统审查和荟萃分析。 bmj。 2016; 355:i5953。 https://doi.org/10。 1136/bmj.i5953 5。 Honigberg MC,Zekavat SM,Pirruccello JP,Natarajan P,Vaduga-Nathan M.心血管和肾脏成果遍及整个血糖谱:英国生物库的见解。 J Am Coll Cardiol。 2021; 78(5):453-464。 https://doi.org/10.1016/j.jacc.2021.05.004 6。 Haw JS,Galaviz KI,Straus An等。 预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。 JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。TabákAG,Herder C,Rathmann W,Brunner EJ,KivimäkiM。糖尿病前:糖尿病发育的高风险状态。Lancet Lond Engl。2012; 379(9833):2279-2290。https://doi.org/10.1016/s0140-6736(12)60283-9 2。家庭,资源,糖尿病L等。IDF糖尿病图集。 (第10版)。 2023年10月3日访问。https://diabetesatlas.org/ 3。 Schlesinger S,Neuenschwander M,Barbaresko J等。 糖尿病前期和糖尿病相关并发症和合并症的风险:前瞻性研究的荟萃分析的雨伞综述。 糖尿病学。 2022; 65(2):275-285。 https://doi.org/10.1007/s00125-021-05592-3 4。 Huang Y,Cai X,Mai W,Li M,Hu Y. 糖尿病前与心血管疾病风险之间的关联与所有导致死亡率:系统审查和荟萃分析。 bmj。 2016; 355:i5953。 https://doi.org/10。 1136/bmj.i5953 5。 Honigberg MC,Zekavat SM,Pirruccello JP,Natarajan P,Vaduga-Nathan M.心血管和肾脏成果遍及整个血糖谱:英国生物库的见解。 J Am Coll Cardiol。 2021; 78(5):453-464。 https://doi.org/10.1016/j.jacc.2021.05.004 6。 Haw JS,Galaviz KI,Straus An等。 预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。 JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。IDF糖尿病图集。(第10版)。2023年10月3日访问。https://diabetesatlas.org/ 3。Schlesinger S,Neuenschwander M,Barbaresko J等。糖尿病前期和糖尿病相关并发症和合并症的风险:前瞻性研究的荟萃分析的雨伞综述。糖尿病学。2022; 65(2):275-285。https://doi.org/10.1007/s00125-021-05592-3 4。 Huang Y,Cai X,Mai W,Li M,Hu Y. 糖尿病前与心血管疾病风险之间的关联与所有导致死亡率:系统审查和荟萃分析。 bmj。 2016; 355:i5953。 https://doi.org/10。 1136/bmj.i5953 5。 Honigberg MC,Zekavat SM,Pirruccello JP,Natarajan P,Vaduga-Nathan M.心血管和肾脏成果遍及整个血糖谱:英国生物库的见解。 J Am Coll Cardiol。 2021; 78(5):453-464。 https://doi.org/10.1016/j.jacc.2021.05.004 6。 Haw JS,Galaviz KI,Straus An等。 预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。 JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。https://doi.org/10.1007/s00125-021-05592-3 4。Huang Y,Cai X,Mai W,Li M,Hu Y. 糖尿病前与心血管疾病风险之间的关联与所有导致死亡率:系统审查和荟萃分析。 bmj。 2016; 355:i5953。 https://doi.org/10。 1136/bmj.i5953 5。 Honigberg MC,Zekavat SM,Pirruccello JP,Natarajan P,Vaduga-Nathan M.心血管和肾脏成果遍及整个血糖谱:英国生物库的见解。 J Am Coll Cardiol。 2021; 78(5):453-464。 https://doi.org/10.1016/j.jacc.2021.05.004 6。 Haw JS,Galaviz KI,Straus An等。 预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。 JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。Huang Y,Cai X,Mai W,Li M,Hu Y.糖尿病前与心血管疾病风险之间的关联与所有导致死亡率:系统审查和荟萃分析。bmj。2016; 355:i5953。https://doi.org/10。 1136/bmj.i5953 5。 Honigberg MC,Zekavat SM,Pirruccello JP,Natarajan P,Vaduga-Nathan M.心血管和肾脏成果遍及整个血糖谱:英国生物库的见解。 J Am Coll Cardiol。 2021; 78(5):453-464。 https://doi.org/10.1016/j.jacc.2021.05.004 6。 Haw JS,Galaviz KI,Straus An等。 预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。 JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。https://doi.org/10。1136/bmj.i5953 5。Honigberg MC,Zekavat SM,Pirruccello JP,Natarajan P,Vaduga-Nathan M.心血管和肾脏成果遍及整个血糖谱:英国生物库的见解。J Am Coll Cardiol。2021; 78(5):453-464。https://doi.org/10.1016/j.jacc.2021.05.004 6。Haw JS,Galaviz KI,Straus An等。预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。 JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。预防糖尿病的长期可持续性:随机临床试验的系统综述和元分析。JAMA Intern Med。 2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。JAMA Intern Med。2017; 177(12):1808-1817。 https://doi.org/10.1001/jamainternmed。 2017.6040 7。 糖尿病学。 2006; 49(2):289-297。2017; 177(12):1808-1817。https://doi.org/10.1001/jamainternmed。2017.6040 7。糖尿病学。2006; 49(2):289-297。2006; 49(2):289-297。Ramachandran A,Snehalatha C,Mary S,Mukesh B,Bhaskar AD,Vijay V.印度糖尿病预防计划表明,生活方式修饰和二甲双胍可预防患有葡萄糖耐受性受损(IDPP -1)的亚洲印度印度受试者的2型糖尿病(IDPP -1)。https://doi.org/10.1007/s00125- 005-0097-z 8。echouffo -tcheugui JB,Perreault L,Ji L,Dagogo -JackS。糖尿病前期的诊断和管理:评论。JAMA。 2023; 329(14):1206-1216。 https://doi.org/10.1001/jama.2023.4063 9。 Tuomilehto J,LindströmJ,Eriksson JG等。 预防2型糖尿病因葡萄糖耐受性受损的受试者之间的生活方式而改变。 n Engl J Med。 2001; 344(18):1343-1350。 https://doi.org/10.1056/nejm200105033441801 10。 Knowler WC,Barrett -Connor E,Fowler SE等。 使用生活方式干预或二甲双胍的2型糖尿病的发病率降低。 n Engl J Med。 2002; 346(6):393-403。 https://doi.org/10.1056/ nejmoa012512 11。 li MJ,Ren J,Zhang WS等。 饮酒与2型糖尿病和糖尿病前的饮酒关联:广州生物银行队列研究。 糖尿病代替Res Rev。 2022; 38(6):E3548。 https:// doi。 org/10.1002/dmrr.3548 12。 Kar D,El -Wazir A,Delanerolle G等。 基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。 Eclinicalmedicine。 2022; 51:101544。 https://doi.org/10.1016/j.eclinm。 2022.101544 13。JAMA。2023; 329(14):1206-1216。https://doi.org/10.1001/jama.2023.4063 9。 Tuomilehto J,LindströmJ,Eriksson JG等。 预防2型糖尿病因葡萄糖耐受性受损的受试者之间的生活方式而改变。 n Engl J Med。 2001; 344(18):1343-1350。 https://doi.org/10.1056/nejm200105033441801 10。 Knowler WC,Barrett -Connor E,Fowler SE等。 使用生活方式干预或二甲双胍的2型糖尿病的发病率降低。 n Engl J Med。 2002; 346(6):393-403。 https://doi.org/10.1056/ nejmoa012512 11。 li MJ,Ren J,Zhang WS等。 饮酒与2型糖尿病和糖尿病前的饮酒关联:广州生物银行队列研究。 糖尿病代替Res Rev。 2022; 38(6):E3548。 https:// doi。 org/10.1002/dmrr.3548 12。 Kar D,El -Wazir A,Delanerolle G等。 基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。 Eclinicalmedicine。 2022; 51:101544。 https://doi.org/10.1016/j.eclinm。 2022.101544 13。https://doi.org/10.1001/jama.2023.4063 9。Tuomilehto J,LindströmJ,Eriksson JG等。预防2型糖尿病因葡萄糖耐受性受损的受试者之间的生活方式而改变。n Engl J Med。2001; 344(18):1343-1350。https://doi.org/10.1056/nejm200105033441801 10。 Knowler WC,Barrett -Connor E,Fowler SE等。 使用生活方式干预或二甲双胍的2型糖尿病的发病率降低。 n Engl J Med。 2002; 346(6):393-403。 https://doi.org/10.1056/ nejmoa012512 11。 li MJ,Ren J,Zhang WS等。 饮酒与2型糖尿病和糖尿病前的饮酒关联:广州生物银行队列研究。 糖尿病代替Res Rev。 2022; 38(6):E3548。 https:// doi。 org/10.1002/dmrr.3548 12。 Kar D,El -Wazir A,Delanerolle G等。 基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。 Eclinicalmedicine。 2022; 51:101544。 https://doi.org/10.1016/j.eclinm。 2022.101544 13。https://doi.org/10.1056/nejm200105033441801 10。Knowler WC,Barrett -Connor E,Fowler SE等。使用生活方式干预或二甲双胍的2型糖尿病的发病率降低。n Engl J Med。2002; 346(6):393-403。 https://doi.org/10.1056/ nejmoa012512 11。 li MJ,Ren J,Zhang WS等。 饮酒与2型糖尿病和糖尿病前的饮酒关联:广州生物银行队列研究。 糖尿病代替Res Rev。 2022; 38(6):E3548。 https:// doi。 org/10.1002/dmrr.3548 12。 Kar D,El -Wazir A,Delanerolle G等。 基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。 Eclinicalmedicine。 2022; 51:101544。 https://doi.org/10.1016/j.eclinm。 2022.101544 13。2002; 346(6):393-403。https://doi.org/10.1056/ nejmoa012512 11。li MJ,Ren J,Zhang WS等。饮酒与2型糖尿病和糖尿病前的饮酒关联:广州生物银行队列研究。糖尿病代替Res Rev。 2022; 38(6):E3548。 https:// doi。 org/10.1002/dmrr.3548 12。 Kar D,El -Wazir A,Delanerolle G等。 基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。 Eclinicalmedicine。 2022; 51:101544。 https://doi.org/10.1016/j.eclinm。 2022.101544 13。糖尿病代替Res Rev。2022; 38(6):E3548。https:// doi。org/10.1002/dmrr.3548 12。Kar D,El -Wazir A,Delanerolle G等。 基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。 Eclinicalmedicine。 2022; 51:101544。 https://doi.org/10.1016/j.eclinm。 2022.101544 13。Kar D,El -Wazir A,Delanerolle G等。基于吸烟状态的糖尿病和糖尿病患者的蛋白尿的预测因素和决定因素:使用英国生物库数据的横断面研究。Eclinicalmedicine。2022; 51:101544。 https://doi.org/10.1016/j.eclinm。2022.101544 13。Han H,Cao Y,Feng C等。 健康的生活方式与2型糖尿病患者的全原因和特定原因死亡的关联:英国生物库的一项前瞻性研究。 糖尿病护理。 2022; 45(2):319-329。 https://doi.org/10.2337/dc21-1512 14。 Sudlow C,Gallacher J,Allen N等。 英国生物库:一种开放访问资源,用于识别中年和老年各种复杂疾病的原因。 plos med。 2015; 12(3):E1001779。 https://doi.org/10.1371/journal.pmed.1001779Han H,Cao Y,Feng C等。健康的生活方式与2型糖尿病患者的全原因和特定原因死亡的关联:英国生物库的一项前瞻性研究。糖尿病护理。2022; 45(2):319-329。https://doi.org/10.2337/dc21-1512 14。Sudlow C,Gallacher J,Allen N等。英国生物库:一种开放访问资源,用于识别中年和老年各种复杂疾病的原因。plos med。2015; 12(3):E1001779。 https://doi.org/10.1371/journal.pmed.10017792015; 12(3):E1001779。https://doi.org/10.1371/journal.pmed.1001779
法官波斯纳对财产理论的重建,86 U.c hi。L. R EV。 1201(2019)(受邀)。 通过通用预先清除来解决药品价格峰值,39 J. L Egal M Edicine 169(2019)(被邀请)。 评论I C Ontain M Ultitudes,J。L.&B Isciences(2017)。 移动健康创新与机构间协调,26 A NNALS of Hiph L AW 1(2017)。 付款人的奖品,J。L。&B Isciences(2017)(审查)(邀请对Rebecca S. Eisenberg&W。Nicholson Price的评论,II,II,在需求方面促进医疗保健创新,J。L.&B Iosciences(2017))。 请注意,诊断方法专利和后续创新的危害,126 h ARV。 L. R EV。 1370(2013)。 最高法院,2011年任期 - 梅奥合作服务案诉Prometheus Laboratories,Inc。,126 H ARV。 L. R EV。 347(2012)。 最近的案例,联邦巡回赛无效的诊断方法主张被吸引的“抽象心理过程”:分子病理协会诉美国专利和商标办公室,125 h ARV。 L. R EV。 658(2011)。 同行评审的期刊史蒂文·乔夫(Steven Joffe),雷纳·康蒂(Rena M. Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,商业健康计划和招待会在2019年加速批准产品的自付支出,183 J. J.L. R EV。1201(2019)(受邀)。通过通用预先清除来解决药品价格峰值,39 J. L Egal M Edicine 169(2019)(被邀请)。评论I C Ontain M Ultitudes,J。L.&B Isciences(2017)。 移动健康创新与机构间协调,26 A NNALS of Hiph L AW 1(2017)。 付款人的奖品,J。L。&B Isciences(2017)(审查)(邀请对Rebecca S. Eisenberg&W。Nicholson Price的评论,II,II,在需求方面促进医疗保健创新,J。L.&B Iosciences(2017))。 请注意,诊断方法专利和后续创新的危害,126 h ARV。 L. R EV。 1370(2013)。 最高法院,2011年任期 - 梅奥合作服务案诉Prometheus Laboratories,Inc。,126 H ARV。 L. R EV。 347(2012)。 最近的案例,联邦巡回赛无效的诊断方法主张被吸引的“抽象心理过程”:分子病理协会诉美国专利和商标办公室,125 h ARV。 L. R EV。 658(2011)。 同行评审的期刊史蒂文·乔夫(Steven Joffe),雷纳·康蒂(Rena M. Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,商业健康计划和招待会在2019年加速批准产品的自付支出,183 J. J.评论I C Ontain M Ultitudes,J。L.&B Isciences(2017)。移动健康创新与机构间协调,26 A NNALS of Hiph L AW 1(2017)。付款人的奖品,J。L。&B Isciences(2017)(审查)(邀请对Rebecca S. Eisenberg&W。Nicholson Price的评论,II,II,在需求方面促进医疗保健创新,J。L.&B Iosciences(2017))。请注意,诊断方法专利和后续创新的危害,126 h ARV。L. R EV。 1370(2013)。 最高法院,2011年任期 - 梅奥合作服务案诉Prometheus Laboratories,Inc。,126 H ARV。 L. R EV。 347(2012)。 最近的案例,联邦巡回赛无效的诊断方法主张被吸引的“抽象心理过程”:分子病理协会诉美国专利和商标办公室,125 h ARV。 L. R EV。 658(2011)。 同行评审的期刊史蒂文·乔夫(Steven Joffe),雷纳·康蒂(Rena M. Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,商业健康计划和招待会在2019年加速批准产品的自付支出,183 J. J.L. R EV。1370(2013)。最高法院,2011年任期 - 梅奥合作服务案诉Prometheus Laboratories,Inc。,126 H ARV。L. R EV。 347(2012)。 最近的案例,联邦巡回赛无效的诊断方法主张被吸引的“抽象心理过程”:分子病理协会诉美国专利和商标办公室,125 h ARV。 L. R EV。 658(2011)。 同行评审的期刊史蒂文·乔夫(Steven Joffe),雷纳·康蒂(Rena M. Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,商业健康计划和招待会在2019年加速批准产品的自付支出,183 J. J.L. R EV。347(2012)。最近的案例,联邦巡回赛无效的诊断方法主张被吸引的“抽象心理过程”:分子病理协会诉美国专利和商标办公室,125 h ARV。L. R EV。 658(2011)。 同行评审的期刊史蒂文·乔夫(Steven Joffe),雷纳·康蒂(Rena M. Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,商业健康计划和招待会在2019年加速批准产品的自付支出,183 J. J.L. R EV。658(2011)。同行评审的期刊史蒂文·乔夫(Steven Joffe),雷纳·康蒂(Rena M.Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,商业健康计划和招待会在2019年加速批准产品的自付支出,183 J.A m。m ed。a ss'n n n n Internal m Edicine 1016(2023)。Rachel E. Sachs,Loren Adler和Richard Frank,《创新激励措施和制药政策改革的整体观点》,H iealth A Ffairs s Cholar doi:10.1093/haschl/qxad004(2023年7月在线发布)。霍莉·费尔南德斯·林奇(Holly Fernandez Lynch),雷切尔·萨克斯(Rachel E.A m。m ed。a ss'n h i h iealth f orum e231313(2023)。Shelley A. Jazowski,Avi U. Vaidya,Julie M. Donohue,Stacie B. Dusetzina和Rachel E. Sachs,在美国加速批准癌症和非癌药物后的确认性研究开始时,A m。m ed。a ss'n Iternal M Edicine 737(2023)。Holly Fernandez Lynch&Rachel E. Sachs,PreApproval有望自愿撤回FDA批准的药物,328 J.A m。m ed。A SS'n 2392(2022)。Rachel E. Sachs,Julie M. Donohue和Stacie B. Dusetzina,改革美国食品和药物管理局的加速批准计划,以支持州医疗补助计划,11 J.A m。m ed。a ss'n h i h iealth f orum e224115(2022)。Rachel E. Sachs,Shelley A. Jazowski,Kyle A. Gavulic,Julie M. Donohue和Stacie B. Dusetzina,Medicaid和加速批准:在具有和没有验证临床福利的药物上支出,47 J. H Ideal Polics,P ol'y y&L。&L。&L。&L。673(202222222)。 J. M Ed。 199(2022)。Rachel E. Sachs,Shelley A. Jazowski,Kyle A. Gavulic,Julie M. Donohue和Stacie B. Dusetzina,Medicaid和加速批准:在具有和没有验证临床福利的药物上支出,47 J. H Ideal Polics,P ol'y y&L。&L。&L。&L。673(202222222)。J. M Ed。 199(2022)。J. M Ed。199(2022)。Rachel E. Sachs,Julie M. Donohue和Stacie B. Dusetzina,加速批准 - 认真对待FDA的担忧,387 n ew e ng。