zqtian@xmu.edu.cn表面增强的拉曼光谱(SERS)的领域是在1970年代中期开始的,并于1990年代中期恢复。在1974年,依赖于电化学潜力的第一表面拉曼光谱是从Fleischmann,Hendra和McQuillan [1]的吡啶分子中观察到的。这一成就源于他们在拉曼光谱法应用于电化学方面的开创性工作。实际上,这是第一个SERS测量,尽管当时还没有被认为。van Duyne和Jeanmaire很快就仔细地设计了一种测量表面增强因子的程序,因此发现增强因子的阶段为10 5 -10 6。在旷日持久的审查过程之后,这大概是由于审稿人不愿相信表面增强的非正统概念,他们的论文最终于1977年发表[2]。独立地,克雷顿和阿尔布雷希特在同年发表了有关SERS的论文[3]。在1978年,Moskovits首先解释了表面等离子体对粗糙银电极对SERS增强的影响,并预测在覆盖有吸附剂的Ag和Cu胶体可能会发生相同的效果[4]。Creighton等人使用AG和AU胶体对该预测进行了实验验证,并且该效果被Van Duyne在1979年被列为表面增强的拉曼散射(SERS)[5]。在过去的50年中,SERS经过了曲折的途径,发展为强大的诊断技术[5,6]。我们可以从1970年代发现SER的伟大先驱和故事中学到什么?物理。我的演讲将主要通过讨论以下问题来提供历史但前瞻性的主题。为什么要挑战教科书以开设新的科学领域?1990年代,纳米科学(纳米驱动的SER)的sers研究是如何提高的?Will AI会在SERS的研究和应用中迎来一个新时代,并突破2020年代[7]的SERS(AI-DRIENS SERS)的开发瓶颈?参考文献[1] Fleischmann M,Hendra PJ,McQuillan AJ,吡啶的拉曼光谱吸附在银电极,化学。Lett。 (1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。 化学。 (1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。 am。 化学。 Soc。 (1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。 物理。 (1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。 nat。 修订版 mater。 (2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。 化学。 社区。 (2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。 al。 Soc。Lett。(1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。化学。(1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。am。化学。Soc。(1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。物理。(1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。nat。修订版mater。(2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。化学。社区。(2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。al。Soc。,半个世纪的表面增强拉曼光谱:回顾和透视,化学。Rev。 (2024);要出版。Rev。(2024);要出版。
摘要:我们引入了一个灵活的显微镜全纤维 - 光学拉曼探针,该探针可以嵌入设备中以启用Operando的原位光谱。便捷的探针由嵌套的反无核核纤维与集成的高折射率钛酸稀盐Microlens组成。泵激光785 nm激发和近红外收集是独立表征的,表明了全宽度最大最大1.1μm的激发点。由于这比有效的收集区小得多,因此对收集的拉曼散射的影响最大。我们的表征方案提供了适合使用纤维类型和微球的各种组合来测试这些纤维探针功效的合适方案。在表面增强的拉曼光谱样品和铜电池电极上进行的拉曼测量结果证明了纤维探针的生存能力,可以替代散装视神经拉曼显微镜,从而与10个目标相当地收集,从而为在诸如岩石电池监控等应用中的Operando Raman研究铺平了道路。关键字:空心核纤维,拉曼,Microlens,原位,纤维探针,光子纳米夹■简介
- 0.5 mL的麻醉剂是从一个麻醉剂样本中抽出的,并将0.2 µm的过滤器推入单独的管中,从而导致0.25 mL过滤的麻醉液 - 将0.75 mL的MQ水添加到过滤后的麻醉管中,从而导致1:3比例的1:3比例。- 在13.4 rpm的情况下,将过滤后的麻醉管放置在离心机中15分钟。- 将离心麻醉的10 µl移动到乙醇清洁的玻璃显微镜载玻片上 - 将显微镜载玻片放在70°C的热板上,将一根空气管放在一个热板上,吹过一管,穿过18 g的针头,位于样品
Raman Kumar Biswas 博士 外国研究员(自 2023 年 10 月起至 2024 年 10 月) 山口大学创新科学技术研究生院,山口市吉田 1677-1 邮政编码;753-0841,日本前。信州大学助理教授,日本长野县松本(硕士和博士学位(日本东北大学))环境科学与灾害管理学院灾害恢复力与工程系教授兼主席(前)孟加拉国帕图阿卡利 Dumki 帕图阿卡利技术大学 - 8602。电子邮件:rkb07_jh@yahoo.com 和 ramanbiswas@pstu.ac.bd 手机:+8801300841136(BD)https://orcid.org/0000-0002-9741-9988 网站:https://www.pstu.ac.bd/teachers/mr.ramankumarbiswas LInkedin:https://www.linkedin.com/in/raman-kumar-biswas-82981597/ https://about.me/ramankumarbiswas?fbclid=IwAR0gySiyPmZTbRQ396XcY8ALZxMhembe T4EYMClOOrIBP5sNEq-0XpyckOY Google Scholar:https://scholar.google.co.jp/citations?user=jFr-pBgAAAAJ&hl=en 网站:https://colorgeo.com/ 教育
指南兼导师系Rashtreeya Vidyalaya(RV)PU学院摘要: - 本文介绍了一项有关人工智能(AI)在数学中应用(AI)的全面案例研究,重点介绍了Ramanujan系列以及数学常数之间的复杂关系。该研究探讨了如何利用AI,尤其是机器学习和模式识别技术来发现新的数学系列和模式,从而扩展了传奇的数学家Srinivasa Ramanujan的开创性工作。本文以Ramanujan系列的概述开头,说明了它们在数学计算中的重要性和应用。然后,它深入研究了为𝑒和𝜋发掘新系列的AI方法的细节,突出了所使用的算法和模型。
摘要我们提出了一种新颖的旋转时间分辨出贝塞尔轻弹刺激的拉曼散射(B 2 -SRS)显微镜,用于更深的组织3D化学成像,而无需机械Z扫描。为完成任务,我们想到了一种独特的方法,可以通过在样品中生成反式泵和stoke bessel轻子弹来实现光学切片,在该泵中,Bessel Light Bullets的组速度是Ultraslow的组速度(例如VG≈0.1C),并通过引入Anglable Angemable Plights spationd spations spationgions spat-spationd。我们从理论上分析了共线多色Bessel Light Bullet Bullet Generations和速度控制的工作原理,并使用相对的SRS 3D深组织成像的相对时间分辨出的检测。我们还构建了B 2 -SRS成像系统,并在各种样品中使用Bessel Light子弹进行了B 2 -SRS显微镜的第一个演示,用于3D化学成像(例如,聚合物珠幻像(,是春季洋葱组织和猪脑脑),具有高分辨率的聚合物珠幻象,具有生物样品)。与常规的SRS显微镜相比,B 2 -SRS技术在猪脑组织的成像深度上提供了> 2倍的改善。使用B 2 -SRS中开发的反式超声贝塞尔轻子弹在组织中的光学切片方法是通用且易于执行的,并且很容易扩展到其他非线性光学成像模式,以推动在生物医学和生物医学系统和超越生物学和生物医学系统中促进3D显微镜成像。
摘要:扩展Ti 3 C 2 t X MXENE在纳米复合材料以及跨电子,能源存储,能量转换和传感器技术的跨越中的应用,需要简单有效的分析方法。拉曼光谱是评估MXENE复合材料的关键工具;但是,高激光功率和温度可能导致材料在分析过程中的恶化。因此,需要深入了解MXENE光热降解及其氧化状态的变化,但尚无系统研究。这项研究的主要目的是通过拉曼光谱分析研究MXENE晶格的降解。不同的光谱标记与Ti 3 C 2 t X材料内的结构变化有关,并经历了热和激光诱导的降解。在降解过程中,在几个特定步骤中揭示了光谱标记:层间水分子的数量减少, - 哦,组的数量减少,C -C键的形成,晶格的氧化,氧化的氧化以及TIO 2 Nanoparticles的形成(首先是解剖学酶,核心)。通过跟踪位置移位和Ti 3 C 2 t X的强度变化,发现了表示每个步骤启动的光谱标记。这种光谱方法增强了我们对MXENE降解途径的理解,并促进了这些材料将这些材料的增强和可靠的整合到从储能到传感器的各种应用中的设备中。关键字:2D材料,MXENES,拉曼光谱,TIO 2纳米颗粒,Ti 3 C 2 t X,MXENE降解,激光诱导的破坏
在经受相干声子驱动器的铜材料材料中据报道了光诱导的超导性的签名。从瞬态terahertz电导率中提取了“冷”超流体,并被认为与“热”未经节制的准粒子共存,这是一个驱动触发性系统的标志,在该系统中,相干和不相互反应之间的相互作用尚未得到充分了解。在这里,使用时间分辨的自发拉曼散射来探测YBA 2 Cu 3 O 6的光诱导的超导状态的晶格温度。48。通过测量未发动的“观众”声子模式的时间依赖性拉曼散射强度,观察到晶格温度的升高高达140 K。该值与在相同激发条件下测得的准粒子温度估计升高一致。这些温度变化提供了有关驱动状态及其衰减性质的定量信息,并可能提出一种优化这种效果的策略。
卵子研究杂志。20,编号2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。 Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。 P. Giuria 1-710125都灵,意大利。 C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。P. Giuria 1-710125都灵,意大利。C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。C HYDERABAD大学海得拉巴大学500046的物理学学院。氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。这些模式的峰位置和FWHM经历了指示性变化。在不同暴露时间持续时间内具有激光功率的缺陷模式的强度比和(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖' - 𝐺𝐺𝐺𝐺)的变化分别表明边缘缺陷和氧化石墨烯的降低。这些结果扩大了对不同时间持续时间激光功率对氧化石墨烯特征的影响的理解。我们的研究提供了有关激光互动的定量信息。(2024年1月21日收到; 2024年4月8日接受)关键词:氧化石墨烯,缺陷,激光功率,拉曼光谱,平面内晶体大小(L a)1。简介氧化石墨烯是一种二维官能化透明岩片,含有连接在边缘和基础平面的功能分子的氧。氧化石墨烯已被广泛用于电化学超级电容器[1],生物医学[2],传感器[3],现场效应晶体管(FET)[4],燃料电池[5],锂电池[6],Polymer nanocomososes [7]。不同的方法,包括化学,热,水热,电化学和光化学还原,以减少官能团以实现石墨烯样结构,众所周知的石墨烯氧化石墨烯。通过去除不稳定的C = O键[8] Raman Spectroscoppy Analysis是一种非损害工具,可以从频谱参数中获得有关缺陷和疾病的知识,从而通过去除不稳定的C = O键来精确调整和量身定制缺陷[8],对缺陷进行了精确调整和剪裁,从而,对缺陷进行了精确调整和剪裁。通常,G波段是石墨烯片的特征,而D波段随着石墨烯片中的缺陷和疾病的增加而演变。通过对X射线衍射模式或样品的X射线光电光谱进行相应分析来量化拉曼光谱的变化来开发结构光谱相关性[9-11]。氧化石墨烯的拉曼光谱包含一阶带,其特征峰约为1350(D波段)和1580 cm -1(g波段),而在2700 cm -1左右的宽二阶频带。