• 脑震荡是一种脑损伤。 • 脑震荡无法看出来,但症状可能会立即出现。其他症状可能在受伤后数小时或数天出现。 • 我将鼓励所有学生向我和体育部报告任何疑似受伤或疾病,包括脑震荡的迹象或症状。 • 如果我怀疑学生有脑震荡,我有责任及时向体育部和家长/监护人报告。 • 如果我怀疑学生头部或身体受到打击,并且在观察 15 分钟后表现出与脑震荡一致的迹象或症状,我将不允许任何学生当天返回练习、游戏或学术活动。如果确认是脑震荡,学生将不允许返回游戏,直到七天症状消失或医生批准。 • 脑震荡后,大脑需要时间来愈合。如果学生在症状消退之前恢复体育活动,他们更有可能再次遭受脑震荡或更严重的脑损伤。反复脑震荡会导致更长的恢复时间,在极少数情况下,可能会导致永久性脑损伤甚至死亡。
摘要:在这项研究中,表现出亚毫升水平的精度k波段微波范围(MWR)设备,旨在通过空位(Leo Orbit(Leo)中的航天器形成(SFF)验证地球重力场(EGF)和数字高程模型(EGF)和数字高程模型(DEM)。尤其是,本文详细介绍了我们设计和开发的集成Beidou III B1C/B2A双重接收器,包括信号处理方案,增益分配和频率计划。与时间间隔计数器同步解决方案相比,接收器匹配MWR系统的0.1 NS精确同步时间频率基准,并通过静态和动态测试进行了验证。此外,通过使用不同的范围技术,可以深入探索MWR设备范围的精度。测试结果表明,使用同步的双双单向射程(DOWR)微波相蓄积框架,在测试过程中实现了40 µm和1.6 µm/s的精度,并在测试过程中实现了6 µm/s/s的范围速率速率精度。分析了整个MWR系统的范围误差源,而用于SFF相对导航设计的相对轨道动力学模型,用于编队场景的相对轨道动力学模型和自适应KalmanFulter算法。在高精度六个自由度(6-DOF)移动平台中,在硬件(HIL)模拟系统的硬件(HIL)模拟系统中测试了SFF相对导航的性能。使用MWR的自适应相对导航系统的最终估计误差约为0.42 mm(范围/rms)和0.87 µm/s(范围率/rms),这证明了EGF和DEM形成在太空中的未来应用的有希望的准确性。
摘要:CRISPR-Cas 系统是一种强大的工具,可用于体内编辑大多数生物(包括人类)的基因组。多年来,该技术已应用于多个领域,例如农业中的作物升级和育种,包括创造无过敏食品、消灭害虫、改良动物品种、生物燃料行业,甚至可以用作基于细胞的记录设备的基础。在人类健康方面的可能应用包括通过创造转基因生物制造新药、治疗病毒感染、控制病原体、临床诊断应用和治疗由体细胞(例如癌症)或遗传(孟德尔遗传病)突变引起的人类遗传疾病。该系统最具争议的可能用途之一是修改人类胚胎,目的是在出生前预防或治疗人类。然而,该领域的技术发展速度快于法规,其巨大但有争议的潜力引起了一些担忧。在这种情况下,需要颁布适当的法律并制定道德准则,以便正确评估这种方法的优势和风险。在这篇评论中,我们总结了这些基因组编辑技术的潜力及其在人类胚胎治疗中的应用。我们将分析 CRISPR-Cas 的局限性以及在治疗胚胎中可能造成的基因组损伤。最后,我们将讨论所有这些如何影响法律、道德和常识。
摘要:CRISPR-CAS系统是体内编辑大多数器官(包括人)的基因组的强大工具。在这些年中,该技术已在多个领域应用,例如用于升级和繁殖的农业,包括创建无过敏食品,用于消除害虫,用于改善动物品种,生物燃料的行业,甚至可以用作基于基于细胞的记录的基础。可能在人类健康中的应用包括通过创建遗传修饰的生物,病毒感染的治疗,病原体的控制,临床诊断中的应用以及人类遗传疾病的治疗,由体细胞(例如,癌症(例如,癌症)或遗传性(癌症)引起的(Mendelian Disorders)引起的治疗。该系统最分裂的可能用途之一是对人类胚胎的修改,目的是在出生前预防或治愈人类。然而,该领域中的技术的发展速度比法规更快,并且由于其巨大但有争议的潜力而引起了一些问题。在这种情况下,需要颁布适当的法律,必须制定道德准则,以便正确评估这种方法的优势和风险。在这篇综述中,我们总结了这些基因组编辑技术及其在人类胚胎治疗中的应用。我们将分析CRISPR-CAS的限制以及处理过的胚胎造成的可能的基因组损害。最后,我们将讨论所有这些如何影响法律,道德和常识。
在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
ICL7103A/ICL8052A A/D 转换器的基本电路保持不变。但是,需要进行一些修改以适应 100mV 参考。首先,修改参考电压分压器网络 (5.1k、1k) 以获得更高的分辨率。其次,将积分器电阻减小到 10k ,以便在 V IN = 200mV 时实现大约 8V 的积分器摆幅。第三,应使用 300k 电位器替换比较器转换网络中的 300k 固定电阻。当 V IN = 0V 时,应调整此电位器,直到显示屏读取相等间隔的正负符号。在自动归零期间,此网络将比较器输出提升至 ICL7103A 逻辑的阈值。连接在积分器电容上的两个 JFET 在严重超量程情况下保持积分器和自动归零电容的完整性。