摘要:为了减少对化石燃料的依赖,观察到对源自可再生能源(例如太阳能热,海洋热和地热)的浮动和间歇热源的利用的兴趣增加,并观察到了废热。这些热源可用于在相对较低和中等温度(例如通过有机兰氨酸周期(ORC))发电。在某些案例研究中,已经开发了各种方法,以利用合适的工作流体来处理所需的工作条件下的兽人。本文旨在审查具有热量存储(TES)(TES)的某些设计和集成系统,以及侧重于利用中等和低温热源的两相扩展系统,其中提出了一些亚临界兽人。此外,报道并比较了带有TES的几种可能的控制系统(常规和高级)和两相扩展系统。在本文末尾,讨论了设计和控制系统的未来发展,以描述使用低级热源的高级ORC。本研究旨在使研究人员和工程师深入了解此过程中涉及的挑战,从而使ORC技术的工业化更广泛,尤其是与TES和两相扩展系统相结合时。
克拉马斯瀑布市地热资源丰富。1964 年,俄勒冈理工学院 (OIT) 将其克拉马斯瀑布校区迁至相对较浅的地热储层,利用热水为校园建筑供暖(16 栋建筑,建筑面积约 100 万平方英尺)。地热区域供热系统使用三个生产井供应 192⁰F 至 197⁰F 的热水。废水通过两个注入井返回储层。2010 年,地热供热系统进行了改造,包括一个 280 kW(总功率)的 Pratt & Whitney PureCycle 模块化有机朗肯循环 (ORC) 发电厂和一个水冷塔。ORC 循环用于将低温热能转化为电能。这是世界上第一个大学校园地热热电联产项目。
有机朗肯循环 (ORC) 是一种热力学循环,利用有机工作流体在封闭系统中将热量转化为机械能以产生电能。它也是一种热回收技术,可以在低温下使用热量,使其成为一种具有成本效益和更高能源效率的有前途的热力学循环。然而,ORC 系统的总效率取决于膨胀机特性和工作流体特性与系统热力学循环参数的兼容性。本研究旨在使用综合综述方法分析 ORC 系统作为热回收技术的开发。综合综述方法的目的是审查知识库,其中的审查是批判性的,并有可能概念化和扩展已开发的理论基础。在这种情况下,第一个分析是关于 ORC 系统参数的文献研究。此外,进一步讨论了 ORC 系统的开发和优化,以分析其在各种应用中的能力。已经报告了工作流体、组件优化和系统配置,以进行可能的改进。此外,该 ORC 系统可用作开发各种可再生能源的技术,包括太阳能、生物质能、地热能和废热。此外,还评估了该系统在开发其能力和潜力方面的环境和经济效益。结果表明,将 ORC 系统集成到各种可再生能源中可以提供正常运行、更好的效率以及增加功率和减少污染等优势。
从地热来源作为一种可持续能源类型的电力生产在我国越来越普遍。二元电厂地热能发电厂是借助地热流体热量到有机排名(ORC)的系统。对周期和构成周期的每个系统元素的能量和Exergia分析均已详细进行。工程方程求解器(EES)软件已用于这些分析。n-pentan用作ORC系统中的工作流程。由于计算,整个系统的能源效率为6%,并且发现自行量为45%。根据系统的不同工作参数的产量变化已通过图形证明。发现发电厂中最高的EXERGIC损失为6.12 MW(占Exergia的整个损失的26%)和空气冷凝器2。在研究中,提出了各种建议和建议,以减少热损失并提高系统效率。
地热或地热能是清洁能量的来源,可作为化石燃料的替代品。高温的地热已被广泛利用为发电厂。地热,低温和中等温度具有巨大的潜力,可以使用有机兰金循环/ORC循环成为电力发电机,这是用有机体液体代替水,该液体具有较低的沸点。在这项研究中,兽人配置将在地热中以发电厂的形式呈现。此外,还将检查有机流体作为工作流体的选择,因为这决定了发电机系统的性能/性能。必须将工作流体的选择视为与其特性相关,例如沸点,分解温度及其对系统组件的影响。
摘要 地热发电的普遍优势是其可靠性和基载能力。然而,未来的能源系统需要可靠的能源,这些能源还能对需求的变化做出快速反应。可逆有机朗肯循环 (ORC) 也可用作高温热泵 (HTHP),使地热系统能够更灵活地运行。与区域供热系统和/或储热系统 (例如 HT-UTES) 相结合,可逆 ORC 可以响应电网的需求,从地热盐水中发电或在 HTHP 模式下消耗电力。通过实施存储系统,HTHP 运行期间产生的高温热量可用于在以后增加地热电力输出。这项工作概述了可逆 ORC 在地热系统中的应用和灵活性潜力,并介绍了此类系统的潜在系统布局。
摘要 卡诺电池是一种新兴的基载电能存储技术。在充电过程中,该概念通过热泵将多余的电能转换为热能。在放电阶段,动力循环将存储的热能转换回电能。基于有机朗肯循环的卡诺电池依靠技术成熟的组件,可以有效整合低温热源,从而达到相当高的效率。然而,热集成的卡诺电池陷入了功率效率、存储大小和热源利用率之间的权衡。本研究提出了两种方法来尽量减少这种三难困境。第一种方案针对包含闪蒸循环的新型循环布局。模拟结果表明,具有两相膨胀器的有机闪蒸循环可提高卡诺电池的效率,特别是对于高存储温度范围,从而实现更紧凑的存储。第二种方案建议将卡诺电池作为可再生能源和区域供热网之间的高度集成链接。这使得卡诺电池成为一种灵活的部门耦合技术,可以根据需求存储和提供电力和热量。
(i) 每个人都有责任保护其他实验室用户和自己的健康和安全,因此应该熟悉《学校安全手册》。 (ii) 学术主管对研究小组活动的健康和安全负全部责任,因此必须确保员工、学生和访客熟悉本《行为准则和风险评估》以及《学校安全手册》的内容并遵守其要求。 (iii) 未经实验室监护人 Robert Hadfield 教授许可,不得在量子传感器实验室 Rankine 222b 内开展任何研究活动。 (iv) 除非本表格中的风险评估(第 B 部分)涵盖,否则不得开展任何工作。新活动应与主管、实验室监护人和学校安全主任讨论。 B 部分应在批准后进行相应更新。 (v) 当前《行为准则和风险评估》的电子版应发送给实验室负责人,并与学校安全主任分享。实验室入口内墙上的橙色文件夹中展示了当前《操作守则和风险评估》的印刷版,该版由所有当前用户签名并注明日期(电子版或实体版)(C 部分)。 (vi) 所有实验室用户必须熟悉学校安全手册中强调的一般安全程序以及实验室内安全设备的位置。总结: • 紧急情况下,请拨打电话号码 4444(内部),0141 330 4444(外部) • 紧急出口位于实验室内。要离开 Rankine 大楼,请使用主楼梯间(而不是电梯) • 灭火器位于 2 楼的主楼梯间 • 实验室和 4 楼的管理员办公室提供急救箱。 (vii) 在正常办公时间(上午 8 点至下午 5 点)以外和周末工作需要您的主管许可。非工作时间工作簿位于实验室大厅