Zoetis Services LLC诉Boehringer Ingelheim Vetmedica GmbH [2024] Apo 4专利申请:2017245601和创新专利:2020102685标题:使用Pimobendan的使用:使用皮莫本丹的心脏大小和/或临时症状的患者延迟的症状: Boehringer Ingelheim Vetmedica GmbH对手:Zoetis Services LLC代表:L。F. McCaffery决策日期:2024年2月8日听证日期:2023年7月18日在堪培拉。catch词:专利 - 反对根据第59条授予专利的标准申请 - 根据第101m条的反对与创新专利的反对 - 对具有已知药物 - 新颖性 - 事先使用的患者群体的治疗 - 先前使用 - 发明步骤 - 奖励 - 奖励效果 - 支持 - 支持 - 清晰的披露 - 足够的披露 - 足够的披露 - 实用 - 实用 - 实用 - 对反对的成本 - 对反对 - 对反对 - 对反对 - 对反对的阶级 - 对立的阶梯 - 总结了101m - 申请人有机会对标准申请进行修正。代表性:申请人的律师:申请人的Clare Cunliffe专利律师:FB Rice Pty Ltd的Marcus Caulfield的对手:Patrick Flynn SC和Ben Mee专利律师:邓肯·朗斯特夫(Duncan Longstaff)和Spruson&Ferguson&Ferguson and Ferguson Lawsy law/div>>
液化天然气 (LNG) 含有大量冷能,通常在再气化过程中被浪费。随着可再生能源在电网中的渗透率不断提高,发电曲线与电力需求曲线的匹配度不高,导致高峰时段电力短缺,非高峰时段电力过剩。在这种情况下,提出了一种将压缩空气储能 (CAES) 系统与 LNG 冷能利用过程相结合的混合能源系统来解决这些问题。该集成系统由有机朗肯循环 (ORC)、燃气轮机、多效海水淡化装置、CAES 系统和家用制冷装置组成。进行了综合分析以评估系统的经济和热力学性能。该研究提出了一项参数研究来说明关键参数对系统性能的影响。由于 ORC 可以同时利用 LNG 冷能和来自 CAES 系统的压缩废热,因此集成系统的能源效率显著提高。所提出的系统在高峰时段可以产生 29.8 MWh 的电能和 2.6 kg/s 的淡水。此外,结果还显示,二氧化碳排放量、火用往返效率和成本率分别为 0.267 kg/kWh、45.9% 和 448.6 美元/小时。
有机朗肯循环是将低品位热源转化为电能的可用解决方案之一。然而,由于膨胀机的特殊设计,工厂的开发往往非常昂贵。通常,设计 ORC 工厂的输入参数是热源和冷源的温度和功率。它们决定了工作流体、压力和温度的选择。然后根据所需的操作参数设计膨胀机。使用市场上容易买到且性能众所周知的标准涡轮机可以降低开发和制造成本。然而,必须对 ORC 进行调整,以使膨胀机在最佳条件下工作。对于太阳能聚光热源,可以通过调整聚光系数和集热器总面积来调整温度和功率。在本文中,考虑使用给定的燃气轮机作为 ORC 的膨胀机。了解涡轮机在空气中的性能后,基于相似规则寻找不同流体的 ORC 的最佳运行参数(压力、温度、流量和转速)。调整的目的是保持工作流体与空气相同的密度变化、相同的入口速度三角形和相同的入口马赫数。然后使用 CFD 模拟计算涡轮机的性能图,并显示最大等熵效率接近空气,约为 78%。
AI 人工智能 ANL 阿贡国家实验室 bbl 桶 BF 高炉 BOF 碱性氧气转炉 Btu 英热单位 CCUS 碳捕获和利用系统 CH 4 甲烷 CHP 热电联产 CO 一氧化碳 CO 2 二氧化碳 DOE 美国能源部 DRI 直接还原铁 EAF 电弧炉 EIA 美国能源信息署 EM 电磁 GHG 温室气体 H 2 氢气 HCFC 氢氯氟烃 IoT 物联网 IR 红外线 kg 千克 kWh 千瓦时 lb 磅 LBNL 劳伦斯伯克利国家实验室 MECS 制造业能源消耗调查 MMBtu 百万英热单位 MMT 百万公吨 MT 公吨 MW 微波 MYPP 多年期计划 N 2 O 一氧化二氮 NAICS 北美行业分类系统 NO x 氮氧化物 NREL 美国国家可再生能源实验室 ORC 有机朗肯循环 ORNL 橡树岭国家实验室 Q&A 问答 R&D 研究与开发 RAPID 工艺强化部署的快速发展 RD&D 研究、开发和演示 RF 射频 RO 反渗透 SCADA 监控和数据采集
本研究对利用和储存太阳能和近地表地热源产生电能和热能的系统进行了热力学和热经济学分析。三种不同的配置,即有机朗肯循环 (ORC)、热电联产系统 (CGN) 和混合系统 (HYB),与槽式集热器 (PTC) 系统耦合。这些系统分别命名为 PTC-ORC、PTC-CGN 和 PTC-HYB。参考系统 PTC-ORC 仅使用槽式集热器产生电能,没有热能存储系统,而在 PTC-CGN 中,除了电能和热能的联产外,还提供热能存储。最后,在土耳其广泛使用的近地表地热能的帮助下,对 PTC-HYB 进行了热力学和经济分析。本研究以安卡拉 Kızılcahamam 近地表地热场的实际数据作为混合系统的热源。这些设施每个可生产 1 兆瓦电力,首先借助参数研究进行优化,并针对最佳热条件进行能源经济分析。PTC-ORC、PTC-CGN 和 PTC-HYB 的发电成本分别为 0.257 美元/千瓦时、0.448 美元/千瓦时和 0.401 美元/千瓦时。研究表明,热能储存会带来额外成本,而近地表地热源可能有助于降低可再生能源的能源成本。© 2021 Elsevier Ltd. 保留所有权利。
可再生能源在能源系统中的份额不断增加,需要储能技术来处理间歇性能源和变化的能源消耗。液态空气储能 (LAES) 是一种很有前途的技术,因为它具有高能量密度并且不受地理限制。通过在 LAES 中使用热能和冷能回收循环可以获得相对较高的往返效率 (RTE)。在本文中,针对独立 LAES 系统优化并比较了与不同冷能回收循环相关的七种案例。首次考虑使用多组分流体循环 (MCFC) 和有机朗肯循环 (ORC) 作为 LAES 中的冷回收循环。最优结果表明,具有双 MCFC 的 LAES 系统性能最佳,RTE 为 62.4%。通过将高温热交换器的最小温差从 10 C 降低到 5 C,可将此 RTE 进一步提高到 64.7%。优化结果还表明,冷能回收系统中使用的 ORC 不产生任何功,只发生工作流体的相变,因此不应使用它们。最后,应用能量传递效率来测量充电和放电过程的热力学性能。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
Olgiate Olona(VA) - 意大利,2024年7月2日 - Exergy International是清洁能源技术的全球提供商,新一代地热兽电发电厂的领导者已与Rentco Africa Limited(Rentco Africa Limited(Rentco)签署了合作协议,这是一家在肯尼亚提供的能源租赁解决方案的独立公司,以开发Rentco的Fellco fellco,以开发Rentco的Fell Cole fellco。该项目有望在Olkaria领域增加67 MWE的地热容量,并通过Flash和ORC电厂技术利用地热资源。根据这项合作协议,Exergy将成为Rentco Project的8个有机朗金周期系统的独家技术提供商,以实现总计应用程序。30 MWE。Exergy是增长最快的地热兽人系统供应商,在投资组合中具有500 MWE的容量,将为Rentco提供综合的地热二进制二进制电源工厂设计和维护的技术专业知识,再加上高效的径向流失涡轮机(ROT)技术,以成功地扩展了Rentco Geothermal商业。Exergy International总经理Luca Pozzoni表示:“我们很高兴开始与Rentco的合作,我们认为这将为肯尼亚和其他非洲地区的可再生能源发展带来积极的成果。非洲具有巨大的可再生能源潜力,我们深切致力于利用我们的技术和专业知识来利用这一潜力。这是我们正在进行的努力和Exergy在东非市场上培养的宝贵关系的高潮。:+39 0331 1817620手机:+39 3666012588 s.milanesi@exergy.it我们的目标是为非洲的平稳清洁能源过渡做出贡献,从而改善了整个非洲大陆越来越多的人的电力通道。” Exergy Turkey的总经理,负责非洲市场发展的Erdogan Arpaci对协议表示满意:“我很高兴与Rentco达成协议。我相信,通过金融投资者,机构和技术提供商之间的合作,可以在该地区实现众多有前途的项目。”在2023年底,肯尼亚以安装的地热容量为全球排名前十的国家,拥有985 MWE。随着正在进行的开发项目,它预计将在2024年超过1 GWE里程碑。关于Exergy International SRL Exergy International SRL是清洁能源技术的领先提供商。我们是具有开拓性径向流出涡轮机的有机兰金循环(ORC)系统设计,工程和制造的专家。Exergy的专有技术,由多项专利涵盖,可以通过利用地热,工业,生物量和浓缩太阳能的热源来剥削能源产生高效的能源。Exergy投资组合占500多个MWE和全球第二大地热二元车队。Exergy是HVAC领先的集成系统和服务提供商中国TICA集团的一部分。从意大利北部(米兰)的总部,Exergy出口,并在全球范围内实施其技术,特别关注高增长潜在市场。网站:https://exergy-orc.com/按联系人联系Exergy International Sara Milanesi Marketing&Communications Manager。
Acronym Description AC Alternating Current ACQ Agreed Contract Quota AEMO Australian Energy Market Operator AN Ammonium Nitrate ANT ANT Energy Solutions ATO Australian Tax Office BOM Bureau of Meteorology BOP Balance of Plant BOS Balance of Stack BTM Behind the Meter CAPEX Capital Expenditure CCS Carbon Capture & Storage CEDI Continuous Electrodeionisation CF Capacity Factor CPI Consumer Price Index CSIRO The Commonwealth Scientific and Industrial Research Organisation DC Direct Current DI water Demineralised Water DNM Dyno Nobel Moranbah EBITDA Earnings Before Interest Taxation Depreciation and Amortisation EPC Engineer, Procure & Construct EPCM Engineer, Procure & Construct Management FCPM Fuel Cell Power Module FEED Front End Engineering Design GCR Ground Coverage Ratio GFT Ground Fixed Tilt GH Grey Hydrogen GHI Global Horizontal Irradiance H 2 Hydrogen H 2 O Water HAZOP Hazard and可操作性研究HV高压HVAC供暖,通风和空调IAR冲击评估报告IPL Incitec Pivot Ltd IRR内部回报率KOH氢氧化钾氢氧化钾LCOE LCOE级别的能源LCOH升级的成本LOCH的氢氢化成本升级了氢的成本 OEM Original Equipment Manufacturer OPEX Operational Expenditure ORC Organic Rankine Cycle P&ID Piping and Instrumentation Diagram PEM Proton Exchange Membrane PLC Programmable Logic Controller PPA Power Purchase Agreement PV Photovoltaic RFP Reinforced Fibre Polymer RH Renewable hydrogen RHF Renewable hydrogen Facility RO Reverse Osmosis ROM Rough Order of Magnitude SAT Single Axis Tracking SHE Safety Health & Environment SLD Single Line Diagram
热能储存 (TES) 与核能相结合可以成为解决随着太阳能和风能使用范围扩大而出现的能源生产和需求不匹配问题的变革性贡献。TES 可以为核电站创造新的收入,并有助于降低电网的碳排放。作者之前的工作确定了两种将 TES 与核能接口的技术方法。第一种方法称为主循环 TES,在主朗肯动力循环内对 TES 充电和放电。第二种方法称为次级循环 TES 或 SCTES,将 TES 放电至次级动力循环。本研究分析了 TES 在 1050 MW 核电站套利市场中的潜在经济效益。该研究首次对由于使用 TES 而导致的容量系数变化对收入和内部收益率 (IRR) 的影响进行了现实的量化。该分析针对德克萨斯州电力可靠性委员会 (ERCOT) 代表的一家示范性非管制公用事业公司,针对其三年的峰值功率从传统核电站的 120% 到 150% 进行分析。SCTES 始终提供最高的收入和 IRR。随着 TES 的使用增加和电价的变化,收益也会增加。结果提供了对 TES 与核电整合对经济的影响的技术合理理解,并为追求 SCTES 的设计和实施提供了强有力的经济支持。[DOI:10.1115/1.4053419]
可再生能源在电网中的份额不断增加,需要存储技术来平衡能源供需。热集成泵送热能存储系统被认为是中型到大型存储应用的有前途的技术。其中,压缩热能存储已被众多理论研究确定为有前途的候选技术。尽管进行了这些研究,但迄今为止理论概念的可行性尚未通过实验得到证实。为了弥补这一差距,本出版物首次介绍了世界上第一个 CHESTER(可再生能源压缩热能存储)实验室原型的整个设置和实验结果,该原型具有代表性规模,包括高温热泵和有机朗肯循环,结合显热和新型双管潜热存储作为高温热能存储系统。展示了 10 kW 规模的完全集成 CHEST 系统的稳定运行,并确认了潜热存储单元作为冷凝器和蒸发器的稳定功能。目前的原型结合了三个首创的子系统,效率高达 37%。所呈现的结果证实了迄今为止理论概念的实际可行性,并为进一步优化组件以及更重要的是各个子系统之间的相互作用提供了指导。
