摘要 - 能够在没有人工干预的情况下运行的车辆的出现彻底改变了汽车行业,从而提供了更安全,更有效的运输系统的前景。现在有几天,事故正在增加,并且没有特定的道路安全程序。在这个项目中,我们提出了一个在Raspberry Pi平台,自动驾驶汽车,车道检测,功能上实施的自动驾驶系统。系统使用覆盆子Pi,与PI配对,相机模块可以轻松捕获图像视频以实时捕获和处理。车道检测,以检测道路上的车道标记,从而使车辆能够在车道内保持并安全行驶。拟议的系统旨在提供全面的自动驾驶解决方案,该解决方案可以在低成本硬件和轻量级深度学习模型上实施,从而使其可用于研究,教育和原型设计。该系统展示了自动驾驶汽车的潜力,旨在在其自己的现实环境中安全,智能地导航。关键字 - 自动驾驶,Raspberry Pi,车道检测,实时系统,开放式简历。
摘要:现代信息和通信技术(例如虚拟和混合现实)的使用提供了控制和监视物联网设备的新选择。例如,头部安装显示器(HMD)已成为提高用户生产力和享受的工具。这种开发也与计算机技术的最新进步以及该技术价格下降有关:HMD现在更具功能性,同时在市场上也更广泛地使用。本文提供了两轮机器人汽车,可以使用HMD实时远程控制。遥控器是在统一3D的帮助下在虚拟现实中完成的。开源游戏引擎减少了成本和开发时间。有用于方向盘,变速箱,屏幕和停止按钮的单独对象。控制器和用户的手都可以用作输入操纵器。Oculus耳机的外部摄像头使用手识别来实现此功能。Raspberry Pi 4具有三个主要功能:首先是用GPIO引脚控制直流电动机,其次是将视频流从相机发送到HMD,第三个是接受HMD的控制信号并执行它们。虚拟现实耳机和远程操作车辆(ROV)的数据传输是通过服务器客户通信完成的。Raspberry扮演服务器的角色,该角色写在Python编程语言的烧瓶框架上。该服务器使用异步原理和OPENCV库来使用图像。GPIO引脚由服务器控制,并且也接收请求。VR耳机是客户,该客户端是在Unity Game Engine上写的。用户执行任何操作并实时将视频流传输到屏幕时,设备与服务器进行交互。输入系统的配置是在官方Oculus软件开发套件的帮助下完成的。
摘要 — 这项工作的主要目标是通过构建一个名为 Clupiter 的 Raspberry Pi 集群来模拟超级计算机的运行,使超级计算和并行处理更接近非专业受众。它由八个相互连接的 Raspberry Pi 设备组成,以便它们可以并行运行作业。为了更容易展示它的工作原理,我们开发了一个 Web 应用程序。它允许启动并行应用程序并访问监控系统以查看这些应用程序运行时的资源使用情况。NAS 并行基准 (NPB) 用作演示应用程序。从这个 Web 应用程序中还可以访问一些教育视频。它们以非常翔实的方式处理超级计算和并行编程的概念。
RaspberryPi 使用 Shield PiEEG 测量 EEG、ECG、EMG 和 EOG 本文介绍了用于通过单板计算机系列(RaspberryPi、OrangePi、BananaPi 等)读取信号的屏蔽 PiEEG 的硬件和软件。本文主要提供了如何实现该设备的技术信息。该设备旨在熟悉神经科学,是开始进行 EEG 测量的最简单方法之一。 Ildar Rakhmatulin,博士,PiEEG,ildarr2016@gmail.com 来源 https://github.com/Ildaron/EEGwithRaspberryPI 演示 https://youtu.be/uK8QF2liO5U 关键词:RaspberryPi 和 EEG、ECG、EMG 和 EOG;脑机接口;RaspberryPi 屏蔽 1. 简介 脑机接口是一种读取脑信号的设备,以识别可用于实际目的的任何相关性。 2021 年,我们开发了脑机接口 - ironbci [1,2,3],但芯片短缺大大增加了设备的成本,之后我们改用 PiEEG 屏蔽,这使得降低设备成本和简化安装过程成为可能。PiEEG 设备在会议 [4] 和出版物 [10] 中进行了一般性介绍。在本文中,我们将更多地关注该设备实现的技术细节。2. 安全建议开发的设备仅针对 Raspberry Pi 进行了测试。在测试期间,禁止将设备连接到电源,这是出于安全考虑并避免网络干扰。通过电网供电时不能使用此设备,并且只能在使用 5V 电池(容量不超过 2000 mAh)时使用它。图 1 是设备完整组装的概览。
摘要:尽管人们对使用脑电图 (EEG) 信号作为主体身份识别的潜在生物特征识别的兴趣日益浓厚,并且在使用深度学习 (DL) 模型研究神经信号(例如心电图 (ECG)、脑电图 (EEG)、视网膜电图 (ERG) 和肌电图 (EMG) )方面也取得了进展,但由于单个主体在不同会话中的 EEG 特征变化很大,因此在使用最先进的 DL 模型进行基于 EEG 的主体身份识别任务方面仍然缺乏探索。在本文中,我们探索使用最先进的 DL 模型(例如 ResNet、Inception 和 EEGNet)在 BED 数据集上实现基于 EEG 的生物特征识别,该数据集包含来自 21 个个体的 EEG 记录。我们获得了令人满意的结果,Resnet、Inception 和 EEGNet 的准确率分别为 63.21%、70.18% 和 86.74%,而之前的最佳成果报告的准确率为 83.51%。我们还通过开发一种便携式、低成本、实时的基于 Raspberry Pi 的系统展示了这些模型实时执行 EEG 生物识别任务的能力,该系统集成了从获取 EEG 信号到预测身份的所有必要主体识别步骤,而其他现有系统仅包含整个系统的部分内容。
用于测量的设备是 USB 测试仪,具体来说是 UM25C。该测试仪具有蓝牙连接功能,因此可以将读取的数据下载到计算机并使用 Python 进行合成,因此它是系统满负荷运行的实际负载曲线,其中的元件有助于其运行,并且当电路板未执行任何活动(即处于“空闲”或休息模式)时也是如此。通过这种方式,了解整个系统在满负荷和休眠状态下的消耗,就可以开始必要的计算,以确定必要组件的尺寸,从而使发电机系统正常运行。利用这些信息,我们继续计算元件,通过电池蓄能系统自主建立电源。这就是为什么必须使用消耗数据进行计算,以支持所需的自主性,从而确定电池的尺寸。
Ildar Rakhmatulin* – 博士电子研究员 Sebastian Völkl – 脑机接口开发人员 摘要 本文介绍了可用于读取脑电图信号的 Raspberry Pi 系列单板计算机的开源软件和开发的屏蔽板。我们描述了读取脑电图信号并将其分解为傅里叶级数的机制,并提供了通过闪烁控制 LED 和玩具机器人的示例。最后,我们讨论了脑机接口在不久的将来的前景,并考虑了使用实时脑电图信号控制外部机械物体的各种方法。链接 来源 - https://github.com/Ildaron/EEGwithRaspberryPI/tree/master/Robot_control 网站 - https://www.hackerbci.com/ YouTube – https://youtu.be/wNgCEKIXGUY Slack - pieeg.slack.com *电子邮件:ildarr2016@gmail.com 许可证 - GNU 通用公共许可证 v3.0 关键词:PIEEG、hackerbci、RaspberryPi、EEG、脑机接口 缩写 BCI 脑机接口 EEG 脑电图 SBC 单板计算机 ADC 模拟数字转换器 介绍 提到 BCI 这个术语,许多人会立即联想到用思想的力量控制物体。现在,非侵入性脑电图测量的神经科学才刚刚开始。尽管如此,每一步都让我们更接近这个目标,并激励新一代科学家和工程师为这一科学领域做出贡献。我们有机器学习,它几年前才进入我们的生活,还有足够的计算能力来寻找脑电信号中的相关性。唯一的弱点是数据集的可用性。因此,我们希望有一种价格低廉的设备能让我们朝着解决这个问题迈出一步。读取脑电信号,尽管看似简单——用高精度 ADC 通过电极测量头皮上的微伏电压——却与各种科学领域有关。它涉及读取脑电信号 [1, 2022]、处理脑电信号 [2, 2021]、选择特征,最后将信号用于各种目的。此外,眨眼或咀嚼是不需要的伪影,会将有害的失真引入脑电信号,许多工作致力于对抗这些伪影 [3, 2022; 4, 2022]。然而,与此同时,这些伪影仍然常用于应用任务,例如对外部物体的眨眼控制。林等人。 [5,2010] 通过脑机接口成功通过眨眼控制了电动轮椅。Huang 等人 [6,2019] 开发了一款应用程序,通过眨眼和 BCI 来控制机器人轮椅的集成系统。我们的板子旨在让每个人都熟悉 EEG 的世界,包括那些与神经病学领域没有直接关系的人。所以,我们的使命是降低开始使用 BCI 的技术知识门槛。我们的目标不是与前面描述的论文竞争,而是展示我们的控制
土木工程系Madenat Alelem大学学院,巴格达,伊拉克摘要 - 行人,战争或不同的疾病可以以这种方式影响上肢,因此需要截肢,并对人们执行诸如抓住,握住对象或移动对象等任务的能力产生巨大影响。在这种情况下,有必要开发解决方案以支持上肢截肢者以进行日常活动。BCI(脑部计算机界面)具有使用大脑的神经活动来传达或控制机器人,人造四肢或机器,而无需身体运动。本文提出了脑电图(EEG)心理控制的假肢。它消除了与当前正在使用的肌电和其他类型的假体相关的完整紧急紧张的高价,沉重和依赖性之类的缺点。开发的原型是使用基于EEG的BCI技术通过大脑命令控制的低成本3D打印的假肢。它包括由Raspberry Pi 4控制的步进电动机,以执行诸如打开/关闭移动和保持对象之类的动作。该项目已成功实施并实现了创建精神控制的假肢系统原型的目标,此外还需要进行有关扭矩,力和手部重量的必要实验测试和计算。纸张证明了该方法的可行性,并为改进原型设计以将其连接到上限截肢树桩的设计开放。
近年来,随着机器人应用领域的不断拓展,智能机器人在越来越多的领域为人类服务。对于一些环境复杂、条件恶劣或者具有一定危险性的工作场所,通常需要通过远程控制来操作机器人完成相应的任务。此外,机器人的自主性也十分重要。在机器人自主性的研究中,自主导航是主要的研究方向之一,而SLAM一直是自主导航领域的重要研究课题[1]。视觉SLAM就是借助摄像头,为机器人针对未知环境构建地图。与激光SLAM相比,视觉传感器或摄像头具有视觉信息丰富、硬件成本低廉等优势,是近来SLAM的研究热点[2]。同时,SLAM
版权所有©2021 Corneyllie等。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。