Ildar Rakhmatulin* – 博士电子研究员 Sebastian Völkl – 脑机接口开发人员 摘要 本文介绍了可用于读取脑电图信号的 Raspberry Pi 系列单板计算机的开源软件和开发的屏蔽板。我们描述了读取脑电图信号并将其分解为傅里叶级数的机制,并提供了通过闪烁控制 LED 和玩具机器人的示例。最后,我们讨论了脑机接口在不久的将来的前景,并考虑了使用实时脑电图信号控制外部机械物体的各种方法。链接 来源 - https://github.com/Ildaron/EEGwithRaspberryPI/tree/master/Robot_control 网站 - https://www.hackerbci.com/ YouTube – https://youtu.be/wNgCEKIXGUY Slack - pieeg.slack.com *电子邮件:ildarr2016@gmail.com 许可证 - GNU 通用公共许可证 v3.0 关键词:PIEEG、hackerbci、RaspberryPi、EEG、脑机接口 缩写 BCI 脑机接口 EEG 脑电图 SBC 单板计算机 ADC 模拟数字转换器 介绍 提到 BCI 这个术语,许多人会立即联想到用思想的力量控制物体。现在,非侵入性脑电图测量的神经科学才刚刚开始。尽管如此,每一步都让我们更接近这个目标,并激励新一代科学家和工程师为这一科学领域做出贡献。我们有机器学习,它几年前才进入我们的生活,还有足够的计算能力来寻找脑电信号中的相关性。唯一的弱点是数据集的可用性。因此,我们希望有一种价格低廉的设备能让我们朝着解决这个问题迈出一步。读取脑电信号,尽管看似简单——用高精度 ADC 通过电极测量头皮上的微伏电压——却与各种科学领域有关。它涉及读取脑电信号 [1, 2022]、处理脑电信号 [2, 2021]、选择特征,最后将信号用于各种目的。此外,眨眼或咀嚼是不需要的伪影,会将有害的失真引入脑电信号,许多工作致力于对抗这些伪影 [3, 2022; 4, 2022]。然而,与此同时,这些伪影仍然常用于应用任务,例如对外部物体的眨眼控制。林等人。 [5,2010] 通过脑机接口成功通过眨眼控制了电动轮椅。Huang 等人 [6,2019] 开发了一款应用程序,通过眨眼和 BCI 来控制机器人轮椅的集成系统。我们的板子旨在让每个人都熟悉 EEG 的世界,包括那些与神经病学领域没有直接关系的人。所以,我们的使命是降低开始使用 BCI 的技术知识门槛。我们的目标不是与前面描述的论文竞争,而是展示我们的控制
RaspberryPi 使用 Shield PiEEG 测量 EEG、ECG、EMG 和 EOG 本文介绍了用于通过单板计算机系列(RaspberryPi、OrangePi、BananaPi 等)读取信号的屏蔽 PiEEG 的硬件和软件。本文主要提供了如何实现该设备的技术信息。该设备旨在熟悉神经科学,是开始进行 EEG 测量的最简单方法之一。 Ildar Rakhmatulin,博士,PiEEG,ildarr2016@gmail.com 来源 https://github.com/Ildaron/EEGwithRaspberryPI 演示 https://youtu.be/uK8QF2liO5U 关键词:RaspberryPi 和 EEG、ECG、EMG 和 EOG;脑机接口;RaspberryPi 屏蔽 1. 简介 脑机接口是一种读取脑信号的设备,以识别可用于实际目的的任何相关性。 2021 年,我们开发了脑机接口 - ironbci [1,2,3],但芯片短缺大大增加了设备的成本,之后我们改用 PiEEG 屏蔽,这使得降低设备成本和简化安装过程成为可能。PiEEG 设备在会议 [4] 和出版物 [10] 中进行了一般性介绍。在本文中,我们将更多地关注该设备实现的技术细节。2. 安全建议开发的设备仅针对 Raspberry Pi 进行了测试。在测试期间,禁止将设备连接到电源,这是出于安全考虑并避免网络干扰。通过电网供电时不能使用此设备,并且只能在使用 5V 电池(容量不超过 2000 mAh)时使用它。图 1 是设备完整组装的概览。
资料来源:[1] Raspberry Pi 3 Model B V1.2,Make Magazin,CC BY-SA 4.0 [2] https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md,检索日期:2019 年 8 月 22 日
学习过程按以下顺序进行: 1:理解并学习人工智能中的深度学习和机器学习 2:了解LEGO-EV3主体(组装基本机器人和创建程序) 3:了解Raspberrypi微控制器和摄像头以及基本设置 4:理解和设置JupyterLab 5:理解和学习Google TensorFlow 6:总结研究成果,制作材料并在大阪科学日上展示
▪ Bachelor's degree and related field experience ▪ Sketchup ▪ Inkscape ▪ Knowledge of school and district organization and policy ▪ Experience with additive and subtractive processes ▪ Experience with Arduino and/or RaspberryPi ▪ Experience with fabrication tools such as 3D printers and Laser Cutters ▪ Program and/or Project management experience ▪ Classroom experience and/or relevant experience in the field of education preferred ▪ Demonstrated ability to capture,根据收集的数据进行分析并进行程序化更改▪英语以外的语言流利度是▪▪中等至高熟练程度和或或 /或 /或 /或在Microsoft Windows操作系统中的能力;和Microsoft Suite